Publications by authors named "N A Polteva"

Deciphering the mechanism of functioning of DNA as the carrier of genetic information requires identifying inherent factors determining its structure and function. Following this path, our previous DFT studies attributed the origin of unique conformational characteristics of right-handed Watson-Crick duplexes (WCDs) to the conformational profile of deoxydinucleoside monophosphates (dDMPs) serving as the minimal repeating units of DNA strand. According to those findings, the directionality of the sugar-phosphate chain and the characteristic ranges of dihedral angles of energy minima combined with the geometric differences between purines and pyrimidines determine the dependence on base sequence of the three-dimensional (3D) structure of WCDs.

View Article and Find Full Text PDF

It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex.

View Article and Find Full Text PDF

Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+)-ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations.

View Article and Find Full Text PDF

B-like minimum energy conformations of deoxydinucleoside monophosphate anions (dDMPs) containing Gua and/or Cyt and their Na+ complexes have been studied by the DFT PW91PW91/DZVP method. The optimized geometry of the dDMPs is in close agreement with experimental observations and the obtained minimum energy conformations are consistent with purine-purine, purine-pyrimidine, and pyrimidine-purine arrangements in crystals of B-DNA duplexes. All the studied systems are characterized by pyramidalization of the amino groups, which participate in the formation of unusual hydrogen bond between the carbonyl oxygen of the second base in the dGpdC, dCpdG dDMPs, and their Na+ complexes.

View Article and Find Full Text PDF

Calculations of the energy of interaction between the caffeine molecule and DNA double helix fragment of four complementary pairs have been performed by the molecular mechanics method. The calculations demonstrate the existence of energy minima corresponding to the caffeine molecule position in both wide and narrow grooves. Each of three proton acceptor atoms of caffeine is able to form hydrogen bond with each of three amino groups of DNA bases.

View Article and Find Full Text PDF