Problem: Disruption in homeostatic feedback loops between inflammatory mediators and the hypothalamic-pituitary-adrenal (HPA) axis is a key mechanism linking chronic stress to inflammation and adverse health outcomes, including those occurring during pregnancy. In particular, alterations in glucocorticoid sensitivity may occur as a result of chronic stress, including that due to racial discrimination, and may be implicated in the persistent adverse maternal and infant health outcomes experienced by African Americans. While there are a few large-scale studies in human pregnancy that measure both cytokines and HPA axis hormones, to our knowledge, none directly measure glucocorticoid sensitivity at the cellular level, especially in an African American population.
View Article and Find Full Text PDFUnlabelled: Defective macroautophagy/autophagy and mitochondrial dysfunction are known to stimulate senescence. The mitochondrial regulator PPARGC1A (peroxisome proliferator activated receptor gamma, coactivator 1 alpha) regulates mitochondrial biogenesis, reducing senescence of vascular smooth muscle cells (VSMCs); however, it is unknown whether autophagy mediates PPARGC1A-protective effects on senescence. Using VSMCs, we identified the autophagy receptor SQSTM1/p62 (sequestosome 1) as a major regulator of autophagy and senescence of VSMCs.
View Article and Find Full Text PDFCellular senescence and organismal aging predispose age-related chronic diseases, such as neurodegenerative, metabolic, and cardiovascular disorders. These diseases emerge coincidently from elevated oxidative/electrophilic stress, inflammation, mitochondrial dysfunction, DNA damage, and telomere dysfunction and shortening. Mechanistic linkages are incompletely understood.
View Article and Find Full Text PDFBackground: Clinical studies show that metformin attenuates all‐cause mortality and myocardial infarction compared with other medications for type 2 diabetes, even at similar glycemic levels. However, there is paucity of data in the euglycemic state on the vasculoprotective effects of metformin. The objectives of this study are to evaluate the effects of metformin on ameliorating atherosclerosis.
View Article and Find Full Text PDFObjective: Cellular senescence influences organismal aging and increases predisposition to age-related diseases, in particular cardiovascular disease, a leading cause of death and disability worldwide. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis and function, oxidative stress, and insulin resistance. Senescence is associated with telomere and mitochondrial dysfunction and oxidative stress, implying a potential causal role of PGC-1α in senescence pathogenesis.
View Article and Find Full Text PDF