Publications by authors named "N A Patankar"

The esophagus, the tube-like organ responsible for transporting food from the pharynx to the stomach, operates as a highly mechanical structure, exhibiting complex contraction and distension patterns triggered by neurological impulses. Despite the critical role of mechanics in its function and the need for high-fidelity models of esophageal transport, mechanical characterization studies of human esophagus remain relatively scarce. In addition to the paucity of studies in human specimens, the available results are often scattered in terms of methodology and scope, making it difficult to compare findings across studies and thereby limiting their use in computational models.

View Article and Find Full Text PDF

Some biological systems exhibit both direct and retrograde propagating signal waves despite unidirectional coupling. To explain this phenomenon, we study a chain of unidirectionally coupled Wilson-Cowan oscillators. Surprisingly, we find that changes in the homogeneous global input to the chain suffice to reverse the wave propagation direction.

View Article and Find Full Text PDF

Background: The functional lumen imaging probe (FLIP) has proven to be a versatile device for diagnosing esophageal motility disorders and estimating esophageal wall compliance, but there is a lack of viable software for quantitative assessment of FLIP measurements.

Methods: A Python-based web framework was developed for a unified assessment of FLIP measurements including clinical metrics such as esophagogastric junction (EGJ) distensibility index (DI), maximum EGJ opening diameter, mechanics-based metrics for estimating strength, and effectiveness of contractions, such as contraction power and displaced volume, and machine learning-based clustering and predictive algorithms such as the virtual disease landscape (VDL) and EGJ obstruction probability. The clinical and VDL probability metrics were then validated using FLIP data from 121 subjects constituting different categories of EGJ opening which were diagnosed by expert clinicians.

View Article and Find Full Text PDF

Background: Esophageal motility disorders can be diagnosed by either high-resolution manometry (HRM) or the functional lumen imaging probe (FLIP) but there is no systematic approach to synergize the measurements of these modalities or to improve the diagnostic metrics that have been developed to analyze them. This work aimed to devise a formal approach to bridge the gap between diagnoses inferred from HRM and FLIP measurements using deep learning and mechanics.

Methods: The "mechanical health" of the esophagus was analyzed in 740 subjects including a spectrum of motility disorder patients and normal subjects.

View Article and Find Full Text PDF

Importance: Pediatric consensus guidelines recommend antibiotic administration within 1 hour for septic shock and within 3 hours for sepsis without shock. Limited studies exist identifying a specific time past which delays in antibiotic administration are associated with worse outcomes.

Objective: To determine a time point for antibiotic administration that is associated with increased risk of mortality among pediatric patients with sepsis.

View Article and Find Full Text PDF