A sinusoidal silver grating is used to create a six-fold enhancement of the SPR response compared to a flat surface. The grating parameters are chosen to create a surface plasmon bandgap and it is shown that the enhancement of the sensitivity to bulk sample index occurs when operating near the bandgap. The Kretschmann configuration is considered and the Boundary Element Method is used to generate the dispersion curves.
View Article and Find Full Text PDFDiscrete systems of infinitely long polarizable line dipoles are considered in the quasistatic limit, interacting with a two-dimensional cloaking system consisting of a hollow plasmonic cylindrical shell. A numerical procedure is described for accurately calculating electromagnetic fields arising in the quasistatic limit, for the case when the relative permittivity of the cloaking shell has a very small imaginary part. Animations are given which illustrate cloaking of discrete systems, both for the case of induced dipoles and induced quadrupoles on the interacting particles.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2005
The conductance of photons in two-dimensional disordered photonic crystals is calculated using an exact multipole-plane wave method that includes all multiple scattering processes. Conductance fluctuations, the universal nature of which has been established for electrons in the diffusive regime, are studied for photons, in both principal polarizations and for varying disorder. Our simulations show that universal conductance fluctuations can be observed in H(||) (TE) polarization for weak and intermediate disorder while, for E(||) (TM) polarization, we show that the conductance variance is essentially independent of sample size but strongly dependent on disorder.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2004
We discuss density of states functions for photonic crystals, in the context of the two-dimensional problem for arrays of cylinders of arbitrary cross section. We introduce the mutual density of states (MDOS), and show that this function can be used to calculate both the local density of states (LDOS), which gives position information for emission of radiation from photonic crystals, and the spectral density of states (SDOS), which gives angular information. We establish the connection between MDOS, LDOS, SDOS and the conventional density of states, which depends only on frequency.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2003
We use our previous formulation for cylinder gratings in conical incidence to discuss the photonic band gap properties of woodpile structures. We study scattering matrices and Bloch modes of the woodpile, and use these to investigate the dependence of the optical properties on the number of layers. We give data on reflectance, transmittance and absorptance of metallic woodpiles as a function of wavelength and number of layers, using both the measured optical constants of tungsten and using a perfect conductivity idealization to characterize the metal.
View Article and Find Full Text PDF