Publications by authors named "N A Kurinsky"

Article Synopsis
  • Superconducting qubits can get messed up by tiny energy sources that break apart the pairs of particles needed for superconductivity, making a problem known as "quasiparticle poisoning."
  • Researchers found that a silicon crystal glued to its holder has way more low-energy sound events (called phonons) compared to a similar crystal that wasn't glued, which could affect how well these systems work.
  • The extra phonon events in the glued crystal get less frequent over time, suggesting that the stress from the glue is causing these disturbances and may be impacting other scientific devices too.
View Article and Find Full Text PDF

We present first results from a dark photon dark matter search in the mass range from 44 to 52  μeV (10.7-12.5 GHz) using a room-temperature dish antenna setup called GigaBREAD.

View Article and Find Full Text PDF

We point out that power measurements of single quasiparticle devices open a new avenue to detect dark matter (DM). The threshold of these devices is set by the Cooper pair binding energy, and is therefore so low that they can detect DM as light as about an MeV incoming from the Galactic halo, as well as the low-velocity thermalized DM component potentially present in the Earth. Using existing power measurements with these new devices, as well as power measurements with SuperCDMS-CPD, we set new constraints on the spin-independent DM scattering cross section for DM masses from about 10 MeV to 10 GeV.

View Article and Find Full Text PDF

We measured the nuclear-recoil ionization yield in silicon with a cryogenic phonon-sensitive gram-scale detector. Neutrons from a monoenergetic beam scatter off of the silicon nuclei at angles corresponding to energy depositions from 4 keV down to 100 eV, the lowest energy probed so far. The results show no sign of an ionization production threshold above 100 eV.

View Article and Find Full Text PDF

We introduce the Broadband Reflector Experiment for Axion Detection (BREAD) conceptual design and science program. This haloscope plans to search for bosonic dark matter across the [10^{-3},1]  eV ([0.24, 240] THz) mass range.

View Article and Find Full Text PDF