Publications by authors named "N A Fangue"

Assessing how at-risk species respond to co-occurring stressors is critical for predicting climate change vulnerability. In this study, we characterized how young-of-the-year White Sturgeon () cope with warming and low oxygen (hypoxia) and investigated whether prior exposure to one stressor may improve the tolerance to a subsequent stressor through "cross-tolerance". Fish were acclimated to five temperatures within their natural range (14-22°C) for one month prior to assessment of thermal tolerance (critical thermal maxima, CTmax) and hypoxia tolerance (incipient lethal oxygen saturation, ILOS; tested at 20°C).

View Article and Find Full Text PDF

Freshwater fishes are increasingly facing extinction. Some species will require conservation intervention such as habitat restoration and/or population supplementation through mass-release of hatchery fish. In California, USA, a number of conservation strategies are underway to increase abundance of the endangered Delta Smelt (); however, it is unclear how different estuarine conditions influence hatchery fish.

View Article and Find Full Text PDF

Coastal estuaries globally, including the San Francisco Estuary (SFE), are experiencing significant degradation, often resulting in fisheries collapses. The SFE has undergone profound modifications due to population growth, industrialization, urbanization and increasing water exports for human use. These changes have significantly altered the aquatic ecosystem, favouring invasive species and becoming less hospitable to native species such as the longfin smelt ().

View Article and Find Full Text PDF

Changes in land use, a warming climate and increased drought have amplified wildfire frequency and magnitude globally. Subsequent rainfall in wildfire-scarred watersheds washes ash into aquatic systems, increasing water pH and exposing organisms to environmental alkalinization. In this study, 15 or 20 °C-acclimated Chinook salmon (Oncorhynchus tshawytscha) yearlings were exposed to an environmentally-relevant ash concentration (0.

View Article and Find Full Text PDF