Publications by authors named "N A Cogliano-Shutta"

Identifying the functions of human immunodeficiency virus (HIV)-specific CD8+ T cells that are not merely modulated by the level of virus but clearly distinguish patients with immune control from those without such control is of paramount importance. Features of the HIV-specific CD8+ T-cell response in antiretroviral-treated patients (designated Rx <50) and untreated patients (long-term nonprogressors [LTNP]) matched for very low HIV RNA levels were comprehensively examined. The proliferative capacity of HIV-specific CD8+ T cells was not restored in Rx <50 to the level observed in LTNP, even though HIV-specific CD4+ T-cell proliferation in the two patient groups was comparable.

View Article and Find Full Text PDF

Virus-specific CD8+ T cells probably mediate control over HIV replication in rare individuals, termed long-term nonprogressors (LTNPs) or elite controllers. Despite extensive investigation, the mechanisms responsible for this control remain incompletely understood. We observed that HIV-specific CD8+ T cells of LTNPs persisted at higher frequencies than those of treated progressors with equally low amounts of HIV.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) infection has been associated with perturbations of plasmacytoid dendritic cells (PDC), including diminished frequencies in the peripheral blood and reduced production of type I interferons (IFNs) in response to in vitro stimulation. However, recent data suggest a paradoxical increase in production of type 1 interferons in vivo in HIV-infected patients compared to uninfected controls. Using a flow cytometric assay to detect IFN-alpha-producing cells within unseparated peripheral blood mononuclear cells, we observed that short-term interruptions of antiretroviral therapy are sufficient to result in significantly reduced IFN-alpha production by PDC in vitro in response to CpG A ligands or inactivated HIV particles.

View Article and Find Full Text PDF

Tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide), a new nucleoside antimetabolite, was evaluated in a phase I trial involving children with refractory cancers. The drug was administered i.v.

View Article and Find Full Text PDF