Publications by authors named "N A Artemiev"

This article presents measurements of the piezoelectric modulus of a single crystal of lanthanum gallium silicate (LGS, LaGaSiO). The piezoelectric modulus was measured by X-ray diffraction at angles close to backscattering. Experiments in such schemes are very sensitive to relative changes in the lattice constant in crystals caused by external influences (constant or alternating electric field, mechanical load, temperature change .

View Article and Find Full Text PDF

The aim of the study was to analyze research methods for periodontitis severity and elaborate the most effective diagnostic combination. Twenty patients with moderate periodontal disease were included in the study. In addition to conventional diagnostic methods depth of periodontal pockets (PP) was measured by means of endoscopic system and cone bean CT.

View Article and Find Full Text PDF

During the last ten years, deflectometric profilometers have become indispensable tools for the precision form measurement of optical surfaces. They have proven to be especially suitable for characterizing beam-shaping optical surfaces for x-ray beamline applications at synchrotrons and free electron lasers. Deflectometric profilometers use surface slope (angle) to assess topography and utilize commercial autocollimators for the contactless slope measurement.

View Article and Find Full Text PDF

The ultimate performance of surface slope metrology instrumentation, such as long trace profilers and auto-collimator based deflectometers, is limited by systematic errors that are increased when the entire angular range is used for metrology of significantly curved optics. At the ALS X-Ray Optics Laboratory, in collaboration with the HZB/BESSY-II and PTB (Germany) metrology teams, we are working on a calibration method for deflectometers, based on a concept of a universal test mirror (UTM) [V. V.

View Article and Find Full Text PDF

We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.

View Article and Find Full Text PDF