Microbial communities as the most important and active component of soil play a crucial role in the geochemical cycling of toxic metal(loid)s in the Pb and Zn smelting site soils. However, the relationships between soil microbial communities and the fractions of toxic metal(loid)s and the succession of soil microbial community and functions after enrichment cultivation have rarely been analyzed. In this study, the diversity and composition of microbial communities in soils before and after enrichment cultivation were investigated by high-throughput sequencing.
View Article and Find Full Text PDFSediment or soil in wetlands is regarded as an important sink of antibiotic resistance genes (ARGs). However, there are no studies on the effects of sediment changes (which caused changes in soil texture) on soil ARGs in wetland. Here, we collected topsoil samples from 12 study sites that were deposited in early (prior to the 1970s) or recent years to reveal the responses of soil ARGs to the decrease in grain size of sediment discharged into Dongting Lake.
View Article and Find Full Text PDFWhen biological nitrogen removal (BNR) systems shifted from treating simulated wastewater to real wastewater, a microbial succession occurred, often resulting in a decline in efficacy. Notably, despite their high nitrogen removal efficiency for real wastewater, anammox coupled systems operating without or with minimal carbon sources also exhibited a certain degree of performance reduction. The underlying reasons and metabolic shifts within these systems remained elusive.
View Article and Find Full Text PDFThe lack of electron acceptors in anaerobic sediments leads to endogenous phosphorus release and low removal efficiency of organic pollutants. This study introduced electrodes and iron oxides into sediments to construct electron network transport chains to supplement electron acceptors. The sediment total organic carbon (TOC) removal efficiencies of closed-circuit (CC) and closed-circuit with Fe addition (CC-Fe) were estimated to be 1.
View Article and Find Full Text PDFSci Total Environ
September 2024
This paper investigated the operational characteristics and self-regulation mechanism of the partial denitrification/anammox (PD/A) granular system under the stress of oxytetracycline (OTC), an emerging pollutant that accumulates in municipal wastewater treatment plants through various pathways, posing significant challenges for its future promotion in engineering applications. The results indicated that OTC concentrations below 100 mg/L intensified its short-term inhibition on the PD/A granular sludge system, decreasing functional bacterial activity, while between 150 and 300 mg/L, PD's NO-N to NO-N conversion ability diminished, and Anammox activity was significantly suppressed. Under long-term high OTC stress (20-30 mg/L), nitrogen removal suffered, and batch tests revealed significant inhibition of PD's NO-N to NO-N conversion, dropping from 73.
View Article and Find Full Text PDF