Publications by authors named "N A Akhmetov"

Redox flow batteries (RFBs) are a prospective energy storage platform to mitigate the discrepancy between barely adjustable energy production and fluctuating demand. The energy density and affordability of RFBs can be improved significantly through the transition from aqueous systems to non-aqueous (NAq) due to their wider electrochemical stability window and better solubility of active species. However, the NAqRFBs suffer from a lack of effective membranes with high ionic conductivity (IC), selectivity (low permeability), and stability.

View Article and Find Full Text PDF

Redox flow batteries (RFBs) are a burgeoning electrochemical platform for long-duration energy storage, but present embodiments are too expensive for broad adoption. Nonaqueous redox flow batteries (NAqRFBs) seek to reduce system costs by leveraging the large electrochemical stability window of organic solvents (>3 V) to operate at high cell voltages and to facilitate the use of redox couples that are incompatible with aqueous electrolytes. However, a key challenge for emerging nonaqueous chemistries is the lack of membranes/separators with suitable combinations of selectivity, conductivity, and stability.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how newly regenerated axons using scaffolds and epidural electrical stimulation (EES) can improve spinal cord circuitry and motor functions after spinal cord injury (SCI).
  • - Over 7 weeks, treatments combining scaffolds with neurotrophin-producing Schwann cells and EES led to significant motor function recovery compared to using scaffolds or EES alone, even though the number of regenerated axons was similar across groups.
  • - When researchers re-transected the spinal cord at week 6, motor performance still exceeded that of other groups, indicating that the combined therapies promote synaptic reorganization and enhanced motor recovery after SCI.
View Article and Find Full Text PDF

Biofouling is among the key factors slowing down healing of acute and chronic wounds. Here we report both anti-biofilm and wound-healing properties of the chitosan-immobilized Ficin. The proposed chitosan-adsorption approach allowed preserving ~90% of the initial total activity of the enzyme (when using azocasein as a substrate) with stabilization factor of 4.

View Article and Find Full Text PDF

Chlorinated phenols, or chlorophenols, are persistent priority pollutants that are widespread in the environment. Class III peroxidases are well-characterised plant enzymes that can catalyse the oxidative dechlorination of chlorophenols. Expression of these enzymes by plants is commonly associated with plant stress, therefore limiting scope for phytoremediation.

View Article and Find Full Text PDF