The effect of sodium thiosulfate (ST) on the photodegradation of azathioprine (AZA) was analyzed by UV-VIS spectroscopy, photoluminescence (PL), FTIR spectroscopy, Raman scattering, X-ray photoelectron (XPS) spectroscopy, thermogravimetry (TG) and mass spectrometry (MS). The PL studies highlighted that as the ST concentration increased from 25 wt.% to 75 wt.
View Article and Find Full Text PDFThe physico-chemical properties of two anhydrous AZA forms and their interaction with typical pharmaceutical excipients were assessed by applying various methods (such as PXRD, HPLC, TG/DSC, IR, Raman, PL or UV-Vis) in order to highlight new directions for drug formulation. The stability assessment of AZA anhydrous forms I and II was performed in order to determine the risk of degradation of the active ingredient by accidental exposure to nonstandard conditions in the industrial environment, under different storage, transport or processing conditions. The benefits of form II include increased resistance to chemical degradation over a wide range of pH, but further control of storage and processing conditions is necessary to avoid polymorphic transformation into form I.
View Article and Find Full Text PDFThe influence of Ag and Au nanoparticles and reduced graphene oxide (RGO) sheets on the photodegradation of α-lipoic acid (ALA) was determined by UV-VIS spectroscopy. The ALA photodegradation was explained by considering the affinity of thiol groups for the metallic nanoparticles synthesized in the presence of trisodium citrate. The presence of excipients did not induce further changes when ALA interacts with Ag and Au nanoparticles with sizes of 5 and 10 nm by exposure to UV light.
View Article and Find Full Text PDFIn this work, a complementary ultraviolet-visible (UV-VIS) spectroscopy and photoluminescence (PL) study on melatonin (MEL) hydrolysis in the presence of alkaline aqueous solutions and the photodegradation of MEL is reported. The UV-VIS spectrum of MEL is characterized by an absorption band with a peak at 278 nm. This peak shifts to 272 nm simultaneously with an increase in the band absorbance at 329 nm in the presence of an NaOH solution.
View Article and Find Full Text PDF