Publications by authors named "Myungwoon Lee"

Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below a temperature T. To investigate whether local conformational distributions are detectably different in the homogeneous (i.e.

View Article and Find Full Text PDF

Unlabelled: Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below temperatures T in the 20-40° C range. To investigate whether local conformational distributions are detectably different in the homogeneous and phase-separated states of FUS-LC, we performed solid state nuclear magnetic resonance (ssNMR) measurements on solutions that were frozen on sub-millisecond time scales after equilibration at temperatures well above (50° C) or well below (4° C) T. Measurements were performed at 25 K with signal enhancements from dynamic nuclear polarization.

View Article and Find Full Text PDF

The aggregation of amyloid-beta (Aβ) peptides into cross-β structures forms a variety of distinct fibril conformations, potentially correlating with variations in neurodegenerative disease progression. Recent advances in techniques such as X-ray crystallography, solid-state NMR, and cryo-electron microscopy have enabled the development of high-resolution molecular structures of these polymorphic amyloid fibrils, which are either grown in vitro or isolated from human and transgenic mouse brain tissues. This article reviews our current understanding of the structural polymorphisms in amyloid fibrils formed by Aβ40 and Aβ42, as well as disease-associated mutants of Aβ peptides.

View Article and Find Full Text PDF

Zinc ions are commonly involved in enzyme catalysis and protein structure stabilization, but their coordination geometry of zinc-protein complex is rarely determined. Here, in this chapter, we introduce a systematic solid-state NMR approach to determine the oligomeric assembly and Zn coordination geometry of a de novo designed amyloid fibrils that catalyze zinc dependent ester hydrolysis. NMR chemical shifts and intermolecular contacts confirm that the peptide forms parallel-in-register β-sheets, with the two forms of Zn bound histidines in each peptide.

View Article and Find Full Text PDF

Fibrils formed by the 42-residue amyloid-β peptide (Aβ42), a main component of amyloid deposits in Alzheimer's disease (AD), are known to be polymorphic, i.e., to contain multiple possible molecular structures.

View Article and Find Full Text PDF

Nucleocapsid protein (N-protein) is required for multiple steps in betacoronaviruses replication. SARS-CoV-2-N-protein condenses with specific viral RNAs at particular temperatures making it a powerful model for deciphering RNA sequence specificity in condensates. We identify two separate and distinct double-stranded, RNA motifs (dsRNA stickers) that promote N-protein condensation.

View Article and Find Full Text PDF

Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates.

View Article and Find Full Text PDF

Protein domains without the usual distribution of amino acids, called low complexity (LC) domains, can be prone to self-assembly into amyloid-like fibrils. Self-assembly of LC domains that are nearly devoid of hydrophobic residues, such as the 214-residue LC domain of the RNA-binding protein FUS, is particularly intriguing from the biophysical perspective and is biomedically relevant due to its occurrence within neurons in amyotrophic lateral sclerosis, frontotemporal dementia, and other neurodegenerative diseases. We report a high-resolution molecular structural model for fibrils formed by the C-terminal half of the FUS LC domain (FUS-LC-C, residues 111-214), based on a density map with 2.

View Article and Find Full Text PDF

The HIV envelope glycoprotein mediates virus entry into target cells by fusing the virus lipid envelope with the cell membrane. This process requires large-scale conformational changes of the fusion protein gp41. Current understanding of the mechanisms with which gp41 induces membrane merger is limited by the fact that the hydrophobic N-terminal fusion peptide (FP) and C-terminal transmembrane domain (TMD) of the protein are challenging to characterize structurally in the lipid bilayer.

View Article and Find Full Text PDF

The HIV-1 glycoprotein, gp41, mediates fusion of the virus lipid envelope with the target cell membrane during virus entry into cells. Despite extensive studies of this protein, inconsistent and contradictory structural information abounds in the literature about the C-terminal membrane-interacting region of gp41. This C-terminal region contains the membrane-proximal external region (MPER), which harbors the epitopes for four broadly neutralizing antibodies, and the transmembrane domain (TMD), which anchors the protein to the virus lipid envelope.

View Article and Find Full Text PDF

Many membrane proteins sense and induce membrane curvature for function, but structural information about how proteins modulate their structures to cause membrane curvature is sparse. We review our recent solid-state NMR studies of two virus membrane proteins whose conformational equilibrium is tightly coupled to membrane curvature. The influenza M2 proton channel has a drug-binding site in the transmembrane (TM) pore.

View Article and Find Full Text PDF

Enveloped viruses enter cells by using their fusion proteins to merge the virus lipid envelope and the cell membrane. While crystal structures of the water-soluble ectodomains of many viral fusion proteins have been determined, the structure and assembly of the C-terminal transmembrane domain (TMD) remains poorly understood. Here we use solid-state NMR to determine the backbone conformation and oligomeric structure of the TMD of the parainfluenza virus 5 fusion protein.

View Article and Find Full Text PDF

Throughout biology, amyloids are key structures in both functional proteins and the end product of pathologic protein misfolding. Amyloids might also represent an early precursor in the evolution of life because of their small molecular size and their ability to self-purify and catalyze chemical reactions. They also provide attractive backbones for advanced materials.

View Article and Find Full Text PDF

The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance.

View Article and Find Full Text PDF

Together with the influenza A virus, influenza B virus causes seasonal flu epidemics. The M2 protein of influenza B (BM2) forms a tetrameric proton-conducting channel that is important for the virus lifecycle. BM2 shares little sequence homology with AM2, except for a conserved HxxxW motif in the transmembrane (TM) domain.

View Article and Find Full Text PDF

Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement.

View Article and Find Full Text PDF

Solid-state NMR spectra of membrane proteins often show significant line broadening at cryogenic temperatures. Here we investigate the effects of several cryoprotectants to preserve the spectral resolution of lipid membranes and membrane peptides at temperatures down to ~200 K. Trehalose, glycerol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), and polyethylene glycol (PEG), were chosen.

View Article and Find Full Text PDF