Publications by authors named "Myungkil Kim"

(ATCC 20696) has a catabolic ability to degrade lignin. Here, we report whole-genome sequencing used to identify genes related to lignin modification. We determined the 39-Mb draft genome sequence of this fungus, comprising 13,560 predicted gene models.

View Article and Find Full Text PDF

Sixteen genomic DNA simple sequence repeat (SSR) markers of were developed from 205 SSR motifs present in 46.1-Mb long genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.

View Article and Find Full Text PDF

is able to synthesize several sesquiterpenes during fungal growth. Using a single-molecule real-time sequencing platform, we present the 53-Mb draft genome of , which contains 6,231 protein-coding genes. Gene annotation and isolation support genetic information, which can increase the understanding of sesquiterpene metabolism in .

View Article and Find Full Text PDF

Whole cells of the basidiomycete fungus Phanerochaete chrysosporium (ATCC 20696) were applied to induce the biomodification of lignin in an in vivo system. Our results indicated that P. chrysosporium has a catabolic system that induces characteristic biomodifications of synthetic lignin through a series of redox reactions, leading not only to the degradation of lignin but also to its polymerization.

View Article and Find Full Text PDF

Fomitopsis palustris is a model brown rot fungus causing destructive wood decay based on the cellulase system. Endoglucanase secreted by F. palustris hydrolyzes cellulose in both the crystalline and amorphous form.

View Article and Find Full Text PDF

Lentinula edodes, the popular shiitake mushroom, is one of the most important cultivated edible mushrooms. It is used as a food and for medicinal purposes. Here, we present the 46.

View Article and Find Full Text PDF

Object of this study was to identify genes and enzymes that are involved in sesquiterpene biosynthesis in the wood rotting fungus, Polyporus brumalis. Sesquiterpenes, β-eudesmane and β-eudesmol, were produced by the mycelium of P. brumalis cultured in modified medium.

View Article and Find Full Text PDF

The laccase gene of Polyporus brumalis was genetically transformed to overexpress its laccase. The transformants exhibited increased laccase activity and effective decolorization of the dye Remazol Brilliant Blue R than the wild type. When the transformants were pretreated with wood chips from a red pine (softwood) and a tulip tree (hardwood) for 15 and 45 days, they showed higher lignin-degradation activity as well as higher wood-chip weight loss than the wild type.

View Article and Find Full Text PDF

The cDNAs of six manganese-dependent peroxidases (MnPs) were isolated from white-rot fungus Polyporus brumalis. The MnP proteins shared similar properties with each other in terms of size (approximately 360-365 amino acids) and primary structure, showing 62-96 % amino acid sequence identity. RT-PCR analysis indicated that these six genes were predominantly expressed in shallow stationary culture (SSC) in a liquid medium.

View Article and Find Full Text PDF

Two laccase cDNAs, pblac1 and pblac2, were cloned from a white-rot fungus strain, Polyporus brumalis (KFRI 20912). The cloned cDNAs consisted of 1,829 bp and 1,804 bp, and their open reading frames encoded proteins of 520 and 524 amino acids, with calculated molecular masses of approximately 55.9 kDa and 56 kDa, respectively.

View Article and Find Full Text PDF

In this study, white rot fungus, Polyporus brumalis, was applied to degrade dibutyl phthalate (DBP), a major environmental pollutant. The degradation potential and resulting products were evaluated with HPLC and GC/MS. As DBP concentration increased to 250, 750, and 1,250 microM, the mycelial growth of P.

View Article and Find Full Text PDF

The white rot fungus Stereum hirsutum was used to degrade methoxychlor [2,2,2-trichloro-1,1-bis(4-methoxyphenyl)ethane] in culture and the degraded products were extensively determined. The estrogenic activity of the degraded products of methoxychlor was examined using cell proliferation and pS2 gene expression assays in MCF-7 cells. S.

View Article and Find Full Text PDF

The characteristic biodegradation of monomeric styrene by Phanerochaete chrysosporium KFRI 20742, Trametes versicolor KFRI 20251 and Daldinia concentrica KFRI 40-1 was carried out to examine the resistance, its degradation efficiency and metabolites analysis. The estrogenic reduction effect of styrene by the fungi was also evaluated. The mycelium growth of fungi differentiated depending on the concentration levels of styrene.

View Article and Find Full Text PDF