Publications by authors named "Myungin Baek"

Inhibitory neuronal circuits within the lateral septum (LS) play a key role in regulating mood and stress responses. Even though glial cells can modulate these circuits, the impact of astrocytes on LS neural circuits and their functional interactions remains largely unexplored. Here, we demonstrate that astrocytes exhibit increased intracellular Ca²⁺ levels in response to aversive sensory and social stimuli in both male and female mice.

View Article and Find Full Text PDF
Article Synopsis
  • The little skate, a cartilaginous fish, exhibits walking-like behavior using genetic and neural properties similar to land vertebrates, but research on its motor circuit development has been limited due to the absence of a high-quality genome reference.
  • A new assembly of the little skate genome with accurate gene annotation enabled detailed analysis of spinal motor neurons critical for locomotion.
  • Comparisons between the motor neuron transcriptomes of the little skate, mouse, and chicken revealed both shared and different gene expression patterns, indicating evolutionary conserved and unique mechanisms in motor neuron development among vertebrates, suggesting complexity in the emergence of advanced motor systems in tetrapods.
View Article and Find Full Text PDF

MicroRNAs (miRNAs) have recently emerged as important regulators of ion channel expression. We show here that select miR-106b family members repress the expression of the KCNQ2 K channel protein by binding to the 3'-untranslated region of KCNQ2 messenger RNA. During the first few weeks after birth, the expression of miR-106b family members rapidly decreases, whereas KCNQ2 protein level inversely increases.

View Article and Find Full Text PDF

The skin is a barrier between the body and the environment that protects the integrity of the body and houses a vast microbiota. By interacting with the host immune system, the microbiota improves wound healing in mammals. However, in fish, the evidence of the role of microbiota and the type of species on wound healing is scarce.

View Article and Find Full Text PDF

Coordinated motor behaviors depend on feedback communication between peripheral sensory systems and central circuits in the brain and spinal cord. Relay of muscle- and tendon-derived sensory information to the CNS is facilitated by functionally and anatomically diverse groups of spinocerebellar tract neurons (SCTNs), but the molecular logic by which SCTN diversity and connectivity is achieved is poorly understood. We used single-cell RNA sequencing and genetic manipulations to define the mechanisms governing the molecular profile and organization of SCTN subtypes.

View Article and Find Full Text PDF

The majority of work on the neuronal specification has been carried out in genetically and physiologically tractable models such as C. elegans, Drosophila larvae, and fish, which all engage in undulatory movements (like crawling or swimming) as their primary mode of locomotion. However, a more sophisticated understanding of the individual motor neuron (MN) specification-at least in terms of informing disease therapies-demands an equally tractable system that better models the complex appendage-based locomotion schemes of vertebrates.

View Article and Find Full Text PDF

Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago.

View Article and Find Full Text PDF

Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved.

View Article and Find Full Text PDF

Control of movement relies on the ability of circuits within the spinal cord to establish connections with specific subtypes of motor neuron (MN). Although the pattern of output from locomotor networks can be influenced by MN position and identity, whether MNs exert an instructive role in shaping synaptic specificity within the spinal cord is unclear. We show that Hox transcription-factor-dependent programs in MNs are essential in establishing the central pattern of connectivity within the ventral spinal cord.

View Article and Find Full Text PDF

A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical, physiological, cognitive and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell types. In particular, it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species, including humans.

View Article and Find Full Text PDF

How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression.

View Article and Find Full Text PDF

Adult Drosophila walk using six multi-jointed legs, each controlled by ∼50 leg motoneurons (MNs). Although MNs have stereotyped morphologies, little is known about how they are specified. Here, we describe the function of Hox genes and homothorax (hth), which encodes a Hox co-factor, in Drosophila leg MN development.

View Article and Find Full Text PDF

Locomotion in adult Drosophila depends on motor neurons that target a set of multifibered muscles in the appendages. Here, we describe the development of motor neurons in adult Drosophila, focusing on those that target the legs. Leg motor neurons are born from at least 11 neuroblast lineages, but two lineages generate the majority of these cells.

View Article and Find Full Text PDF

Camptothecin, a topoisomerase I inhibitor, is a well-known anticancer drug. However, its mechanism has not been well studied in human gastric cancer cell lines. Camptothecin induced apoptotic cell death in human gastric cancer cell line AGS.

View Article and Find Full Text PDF

To identify genes whose alterations lead to gastric cancer, gene expression profiles have been obtained from 22 gastric cancer tissues and their surrounding gastric mucosa tissues. A total of 16 genes were differentially expressed in more than 50% of gastric cancer tissues compared with surrounding gastric mucosa tissues. Genes such as HMG-Y, fibroblast collagenase inhibitor, and osteopontin are among those that are overexpressed in over 50% of the gastric cancer tissues.

View Article and Find Full Text PDF