Publications by authors named "Myung-Chul Noh"

Key mechanisms underlying chronic pain occur within the dorsal horn. Genome-wide association studies (GWASs) have identified genetic variants predisposed to chronic pain. However, most of these variants lie within regulatory non-coding regions that have not been linked to spinal cord biology.

View Article and Find Full Text PDF

The spinal dorsal horn is a major site for the induction and maintenance of mechanical allodynia, but the circuitry that underlies this clinically important form of pain remains unclear. The studies presented here provide strong evidence that the neural circuits conveying mechanical allodynia in the dorsal horn differ by the nature of the injury. Calretinin (CR) neurons in lamina II inner convey mechanical allodynia induced by inflammatory injuries, while protein kinase C gamma (PKCγ) neurons at the lamina II/III border convey mechanical allodynia induced by neuropathic injuries.

View Article and Find Full Text PDF

Some individuals recover from the pain of nerve trauma within 12 months or less whereas others experience life-long intractable pain. This transition between reversible pain and the establishment of chronic neuropathic pain is poorly understood. We examined the role of persistent inflammation in the dorsal root ganglia (DRG) in the long-term maintenance of mechanical allodynia; an index of neuropathic pain.

View Article and Find Full Text PDF

Excitation of dorsal root ganglion (DRG) neurons by interleukin 1β (IL-1β) is implicated in the onset of neuropathic pain. To understand its mechanism of action, isolectin B4 positive (IB) DRG neurons were exposed to 100pM IL-1β for 5-6d. A reversible increase in action potential (AP) amplitude reflected increased TTX-sensitive sodium current (TTX-S I).

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system. Patients with MS typically present with visual, motor, and sensory deficits. However, an additional complication of MS in large subset of patients is neuropathic pain.

View Article and Find Full Text PDF

Neuropathic pain is a debilitating consequence of neuronal injury or disease. Although first line treatments include the alpha-2-delta (α2δ)-ligands, pregabalin and gabapentin (GBP), the mechanism of their anti-allodynic action is poorly understood. One specific paradox is that GBP relieves signs of neuropathic pain in animal models within 30min of an intraperitoneal (IP) injection yet its actions in vitro on spinal dorsal horn or primary afferent neurons take hours to develop.

View Article and Find Full Text PDF

Key Points: Neuropathic pain resulting from peripheral nerve injury is initiated and maintained by persistent ectopic activity in primary afferent neurons. Sciatic nerve injury increases the excitability of medium-sized dorsal root ganglion (DRG) neurons. Levels of the inflammatory cytokine interleukin 1β (IL-1β) increase and peak after 7 days.

View Article and Find Full Text PDF