Publications by authors named "Myung Hoon Choi"

Understanding the dynamic spatial and temporal release of neurotransmitters can help resolve long-standing questions related to chemical modulation of neurological circuits. Dopamine modulates function in a range of physiological processes and is key to transmission in addiction and neurological disorders. Studies at subcellular scales promise to help develop a broader understanding of dopamine release, diffusion, and receptor activation and how these processes lead to functional outcomes.

View Article and Find Full Text PDF

Metal nanocrystals (NCs) produced by colloidal synthesis have a variety of structural features, such as different planes, edges, and defects. Even from the best colloidal syntheses, these characteristics are distributed differently in each NC. This inherent heterogeneity can play a significant role in the properties displayed by NCs.

View Article and Find Full Text PDF
Article Synopsis
  • * Synthesizing nanocrystals with specific structures enhances catalysis by improving efficiency in CO reduction reactions (CORR), but their performance is often evaluated in averaged groups rather than individually.
  • * This study uses advanced microscopy to analyze the performance of individual gold nanocrystals, revealing that certain structures (like {110}-terminated rhombohedra) are more effective in catalyzing CO reduction at low energy inputs.
View Article and Find Full Text PDF

Single entity electrochemical (SEE) studies that can probe activities and heterogeneity in activities at nanoscale require samples that contain single and isolated particles. Single, isolated nanoparticles are achieved here with electrospray deposition of colloidal nanoparticle solutions, with simple instrumentation. Role of three electrospray (ES) parameters, spray distance (emitter tip-to-substrate distance), ES current and emitter tip diameter, in the ES deposition of single Au nano-octahedra (Au ODs) is examined.

View Article and Find Full Text PDF

Cetyltrimethylammonium bromide (CTAB) is a widely used surfactant that aids the aqueous synthesis of colloidal nanoparticles. However, the presence of residual CTAB on nanoparticle surfaces can significantly impact nanoparticle applications, such as catalysis and sensing, under hydrated conditions. As such, consideration of the presence and quantity of CTAB on nanoparticle surfaces under hydrated conditions is of significance.

View Article and Find Full Text PDF

The synthesis and antidiabetic evaluation of ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate (TMPA) and its structural analogs are described. The construction of TMPA derivatives has been successfully achieved in only two steps, which involve the iridium(III)-catalyzed α-alkylation of acetophenones with alcohols and the ketone-directed iridium(III)- or rhodium(III)-catalyzed redox-neutral C-H alkylation of α-alkylated acetophenones using Meldrum's diazo compounds. This synthetic protocol efficiently provides a range of TMPA derivatives with site selectivity and functional group compatibility.

View Article and Find Full Text PDF