With the increasing interest in hydrogen energy, the stability of hydrogen storage facilities and components is emphasized. In this study, we analyzed the effect of high-pressure hydrogen gas treatment in silica-filled EPDM composites with different silica contents. In detail, cure characteristics, crosslink density, mechanical properties, and hydrogen permeation properties were investigated.
View Article and Find Full Text PDFFiller effects on H diffusion in nitrile butadiene rubbers (NBRs) blended with carbon black and silica fillers of different concentrations are first investigated by employing a volumetric analysis. Total uptake, solubility, and diffusivity of hydrogen for ten filled-NBR, including neat NBR, are determined in an exposed pressure range of 1.3 MPa~92.
View Article and Find Full Text PDFFiller effects on H permeation properties in sulfur-crosslinked ethylene propylene diene monomer (EPDM) polymers blended with two kinds of carbon black (CB) and silica fillers at different contents of 20 phr-60 phr are investigated by employing volumetric analysis in the pressure exposure range of 1.2 MPa~9.0 MPa.
View Article and Find Full Text PDFIn neat nitrile butadiene rubber (NBR), three relaxation processes were identified by impedance spectroscopy: α and α' processes and the conduction contribution. We investigated the effects of different carbon black (CB) and silica fillers with varying filler content on the dielectric relaxations in NBR by employing a modified dispersion analysis program that deconvolutes the corresponding processes. The central frequency for the α' process with increasing high abrasion furnace (HAF) CB filler was gradually upshifted at room temperature, while the addition of silica led to a gradual downshift of the center frequency.
View Article and Find Full Text PDF