Microneedles provide the advantages of convenience and compliance by avoiding the pain and fear of needles that animals often experience. Insertion-responsive microneedles (IRMN) were used for administration to a hairy dog without removing the dog's hair. Canine H3N2 vaccine was administered with IRMN attached to the dog's ears ex vivo and the conventional microneedle system (MN) was administered for 15 min to compare puncture performance and delivery efficiency.
View Article and Find Full Text PDFIn this study, we present transcutaneous influenza vaccination using a novel tip-separable microneedle system called insertion-responsive microneedles (IRMNs). IRMNs are composed of dissolvable hyaluronic acid (HA) tips and biocompatible polycaprolactone (PCL) bases, the tip of which is instantly separated from the base during microneedle insertion and retraction. Vaccine antigens derived from canine influenza virus (A/canine/VC378/2012; H3N2) were successfully coated on HA tips by rapidly freezing the tips prior to coating.
View Article and Find Full Text PDFWe have developed an insertion-responsive microneedle (IRMN) system that enables prompt drug delivery through the skin without attaching a skin patch. This system consists of square pyramidal hyaluronic acid (HA) microneedle tips and polycaprolactone (PCL) base arrays. During skin insertion, HA tips can be immediately separated from PCL base arrays due to the relatively weak adhesion strength between HA and PCL.
View Article and Find Full Text PDFBackground: Although some studies have evaluated the clinical impact of lumbosacral transitional vertebrae (LSTV), few have attempted to determine an effective conservative treatment method for lumbar disc herniation (LDH) presenting concurrently with LSTV.
Methods: We prospectively enrolled 291 consecutive patients who were followed-up for at least one year after transforaminal epidural injection (TFEI) for LDH. We confirmed the presence of LSTV with Paik et al.