CataCleave probes are catalytically cleavable fluorescence probes having a chimeric deoxyribonucleic acid (DNA)-ribonucleic acid (RNA)-DNA structure that can be used for real-time detection of single nucleotide polymorphisms (SNPs), insertions, and deletions. Fluorescent donor emission is normally quenched by Förster resonance energy transfer (FRET). Upon binding to the target, if the RNA/DNA hybrid is correctly base-paired, ribonuclease (RNase) H will cleave the RNA moiety and the probe fragments will dissociate.
View Article and Find Full Text PDFCycling probe technology (CPT), which utilizes a chimeric DNA-RNA-DNA probe and RNase H, is a rapid, isothermal probe amplification system for the detection of target DNA. Upon hybridization of the probe to its target DNA, RNase H cleaves the RNA portion of the DNA/RNA hybrid. Utilizing CPT, we designed a catalytically cleavable fluorescence probe (CataCleave probe) containing two internal fluorophores.
View Article and Find Full Text PDFTranslin is an octameric single-stranded DNA binding protein consisting of 228 amino acid residues per monomer. This protein contains two cysteine residues per monomer. Studies of reactions with DTNB show that both cysteines are reactive and exhibit biphasic reaction kinetics.
View Article and Find Full Text PDF