Publications by authors named "Mysore S Shashidhar"

Reactions in solids are of contemporary interest due to applications in pharmaceutical industries to environmental sustainability. Although several reactive crystals that support chemical reactions have been identified and characterized, the same cannot be said about reactive cocrystals. Earlier we correlated the facile acyl group transfer reactions in crystals with supramolecular parameters obtained from the crystal structures.

View Article and Find Full Text PDF

It is far more difficult to recognize and predict the chemical reactions that a molecule of an organic compound can undergo in crystalline (solid) state as compared to the solution state (the "organic functional group" approach), since the published data on solid-state structure-reactivity investigations and correlations are scant. The discovery of the first intermolecular acyl-transfer reaction in molecular crystals of racemic 2,4-di- O-benzoyl- myo-inositol-1,3,5-orthoformate (DiBz) during our attempts to develop methods for the synthesis of phosphoinositols, motivated us to find other molecular crystals capable of supporting similar reactions. Small changes to the molecular structure of DiBz yielded analogues with different crystal structures which showed varying degrees of acyl transfer reactivity as compared to the crystals of DiBz.

View Article and Find Full Text PDF

scyllo-Inositol derived 1,2-trans-diequatorial halohydrins can be efficiently converted to the corresponding epoxides in the presence of lithium hydride. The structure of one of the epoxides was determined by single crystal X-ray diffraction analysis. This provides a potential route for the preparation of ring modified inositol derivatives.

View Article and Find Full Text PDF

A method for the preparation of benzene derivatives from myo-inositol, an abundantly available phyto chemical is described. 1,3-Bridged acetals of inososes undergo step-wise elimination leading to the formation of polyoxygenated benzene derivatives. This aromatization reaction proceeds through the intermediacy of a β-alkoxyenone, which could be isolated.

View Article and Find Full Text PDF

Intermolecular acyl transfer reactivity in several molecular crystals was studied, and the outcome of the reactivity was analyzed in the light of structural information obtained from the crystals of the reactants. Minor changes in the molecular structure resulted in significant variations in the noncovalent interactions and packing of molecules in the crystal lattice, which drastically affected the facility of the intermolecular acyl transfer reactivity in these crystals. Analysis of the reactivity vs crystal structure data revealed dependence of the reactivity on electrophile···nucleophile interactions and C-H···π interactions between the reacting molecules.

View Article and Find Full Text PDF

The pincer-like double ester naphthalene-2,3-diyl-bis(4-fluorobenzoate) (2) is pentamorphic. Upon heating crystals of form I to below their melting point (441-443 K), they undergo a phase transition accompanied by a thermosalient effect, that is, rare and visually striking motility whereby the crystals jump or disintegrate. The phase transition and the thermosalient effect are reversible.

View Article and Find Full Text PDF

Minor variations in the molecular structure of constituent molecules of reactive crystals often yield crystals with significantly different properties due to altered modes of molecular association in the solid state. Hence, these studies could provide a better understanding of the complex chemical processes occurring in the crystalline state. However, reactions that proceed efficiently in molecular crystals are only a small fraction of the reactions that are known to proceed (with comparable efficiency) in the solution state.

View Article and Find Full Text PDF

Racemic 4-O-phenoxycarbonyl and 4-O-phenoxythiocarbonyl derivatives of myo-inositol orthoformate undergo thermal intramolecular cyclization in the solid state to yield the corresponding 4,6-bridged carbonates and thiocarbonates, respectively. The thermal cyclization also occurs in the solution and molten states, but less efficiently, suggesting that these cyclization reactions are aided by molecular pre-organization, although not strictly topochemically controlled. Crystal structures of two carbonates and a thiocarbonate clearly revealed that the relative orientation of the electrophile and the nucleophile in the crystal lattice facilitates the intramolecular cyclization reaction and forbids the intermolecular reaction.

View Article and Find Full Text PDF

Racemic 2,4(6)-di-O-benzoyl-myo-inositol 1,3,5-orthoformate, C21H18O8, (1), shows a very efficient intermolecular benzoyl-group migration reaction in its crystals. However, the presence of 4,4'-bipyridine molecules in its cocrystal, C21H18O8·C10H8N2, (1)·BP, inhibits the intermolecular benzoyl-group transfer reaction. In (1), molecules are assembled around the crystallographic twofold screw axis (b axis) to form a helical self-assembly through conventional O-H···O hydrogen-bonding interactions.

View Article and Find Full Text PDF

Synthetic sequences starting from commercially available myo-inositol necessarily involve protection-deprotection strategies of its six hydroxyl groups. Several strategies have been developed/attempted over the last several decades leading to the synthesis of naturally occurring phosphoinositols, their analogs, and cyclitol derivatives. Of late, myo-inositol 1,3-acetals, which can be obtained by the reductive cleavage of myo-inositol orthoesters have emerged as early intermediates for the synthesis of phosphorylated and other inositol derivatives.

View Article and Find Full Text PDF

Investigation of the intermolecular acyl-transfer reactivity in molecular crystals of myo-inositol orthoester derivatives and its correlation with crystal structures enabled us to identify the essential parameters to support efficient acyl-transfer reactions in crystals: 1) the favorable geometry of the nucleophile (-OH) and the electrophile (C-O) and 2) the molecular assembly, reinforced by C-H⋅⋅⋅π interactions, which supports a domino-type reaction in crystals. These parameters were used to identify another reactive crystal through a data-mining study of the Cambridge Structural Database. A 2:1 co-crystal of 2,3-naphthalene diol and its di-p-methylbenzoate was selected as a potentially reactive crystal and its reactivity was tested by heating the co-crystals in the presence of solid sodium carbonate.

View Article and Find Full Text PDF

Concise and efficient syntheses of the aminocyclitol cores of hygromycin A (HMA) and methoxyhygromycin (MHM) have been achieved starting from readily available myo-inositol. Reductive cleavage of myo-inositol orthoformate to the corresponding 1,3-acetal, stereospecific introduction of the amino group via the azide, and resolution of a racemic cyclitol derivative as its diastereomeric mandelate esters are the key steps in the synthesis. Synthesis of the aminocyclitol core of hygromycin A involved chromatography in half of the total number of steps, and the aminocyclitol core of methoxyhygromycin involved only one chromatography.

View Article and Find Full Text PDF

The title achiral compound, C(35)H(34)O(7), crystallizes in the chiral monoclinic space group P2(1). The molecules are densely packed to form a helical assembly along the crystallographic twofold screw axis via C-H···O and C-H···π interactions. Interestingly, the unit-translated helical chains are loosely connected via a rather uncommon edge-to-edge Ph-H···H-Ph short contact (H···H = 2.

View Article and Find Full Text PDF

Xanthates of 1,3-benzylidene acetal derivatives of myo- and neo-inositols undergo dideoxygenation under Barton-McCombie conditions, as a result of intramolecular abstraction of the benzylidene acetal hydrogen and subsequent cleavage of the acetal ring. Scrutiny of structure of these bicyclic inositol derivatives shows that although the conformation of the two rings can vary depending on the configuration of the inositol ring and the phase in which the molecules are present, both the xanthates lead to the formation of the same dideoxyinositol. DFT calculations on these molecular systems suggest that neo-inositol derivatives undergo conformational change prior to radical formation while myo-inositol derivatives undergo conformational change subsequent to radical formation, during the deoxygenation reaction.

View Article and Find Full Text PDF

The conversion of myo-inositol to epi-inositol can be achieved by the hydride reduction of an intermediate epi-inosose derived from myo-inositol. (-)-epi-Inosose, (I), crystallized in the monoclinic space group P2(1), with two independent molecules in the asymmetric unit [Hosomi et al. (2000).

View Article and Find Full Text PDF

O-Alkylation of myo-inositol derivatives containing more than one hydroxyl group via their alkali metal alkoxides (sodium or lithium) preferentially occurs at a hydroxyl group having a vicinal cis-oxygen atom. In general the observed selectivity is relatively higher for lithium alkoxides than for the corresponding sodium alkoxide. The observed regioselectivity is also dependent on other factors such as the solvent and reaction temperature.

View Article and Find Full Text PDF

The title compound, C(17)H(16)O(8), yields conformational dimorphs [forms (I) and (II)] at room temperature, separately or concomitantly, depending on the solvent of crystallization. The yield of crystals of form (I) is always much more than that of crystals of form (II). The molecule has one donor -OH group that can make intermolecular O-H.

View Article and Find Full Text PDF

Racemic 2,4-di-O-benzoyl-myo-inositol-1,3,5-orthoacetate, which normally crystallizes in a monoclinic form (form I, space group P2(1)/n) could be persuaded to crystallize out as a metastable polymorph (form II, space group C2/c) by using a small amount of either D- or L- 2,4-di-O-benzoyl-myo-inositol-1,3,5-orthoformate as an additive in the crystallization medium. The structurally similar enantiomeric additive was chosen by the scrutiny of previous experimental results on the crystallization of racemic 2,4-di-O-benzoyl-myo-inositol-1,3,5-orthoacetate. Form II crystals can be thermally transformed to form I crystals at about 145 degrees C.

View Article and Find Full Text PDF

Crystallization of tri-O-[p-halobenzoyl]-myo-inositol 1,3,5-orthoformates from ethyl acetate-petroleum ether solution produced concomitant dimorphs that have different halogen bonding contacts; the kinetic form with C-Br...

View Article and Find Full Text PDF

Racemic 2,4-di-O-acyl-myo-inosityl 1,3,5-orthoesters undergo transesterification catalyzed by sodium carbonate with varying ease of reaction in the solid state; reactions in solution and melt do not show such varied differences. An interesting crystal of a 1:1 molecular complex of highly reactive racemic 2,4-di-O-benzoyl-myo-inosityl 1,3,5-orthoformate and its orthoacetate analogue exhibited better reactivity than the latter component alone. Single-crystal X-ray structures of the reactants have been correlated with the observed differences in the acyl-transfer efficiencies in the solid state.

View Article and Find Full Text PDF

myo-Inositol hexabenzoate having meso configuration produces chiral polymorph (form I) when crystallized rapidly but yields achiral polymorph (form II) when allowed to crystallize slowly; in the mother liquor form I slowly but completely disappears to give form II.

View Article and Find Full Text PDF

A convenient high yielding method for the preparation of scyllo-inositol and its orthoformate from myo-inositol, without involving chromatography is described. myo-Inositol 1,3,5-orthoformate was benzoylated to obtain 2-O-benzoyl-myo-inositol 1,3,5-orthoformate. This diol was tosylated and the benzoyl group removed by aminolysis in a one-pot procedure to obtain 4,6-di-O-tosyl-myo-inositol 1,3,5-orthoformate.

View Article and Find Full Text PDF
Article Synopsis
  • The regioselectivity of myo-inositol orthoesters’ sulfonylation can be manipulated using different bases, leading to selective sulfonate formations on specific hydroxyl groups.
  • Monosulfonylation with sodium hydride or triethylamine targets the 4-hydroxyl group, while pyridine shifts the reaction to the 2-hydroxyl group; disulfonylation also varies based on the base used.
  • These sulfonylated derivatives are stable during O-alkylation reactions but can be converted back to myo-inositol derivatives with specific reagents, proving valuable in synthesizing key myo-inositol phosphate compounds.
View Article and Find Full Text PDF

myo-Inositol-derived crown ethers having varying relative orientations (1,3-diaxial, 1,2-diequatorial, and 1,2-axial-equatorial) of the oxygen atoms in the ionophoric ring were synthesized and the extent of their binding with picrates of alkali metals, ammonia, and silver were estimated. These crown ethers bind very well with potassium and silver picrates and show good to moderate binding toward lithium, sodium, cesium, and ammonium picrates. These myo-inositol-derived crown ethers exhibit very strong binding for silver, even though they do not have sulfur or nitrogen coordinating sites in them, which are known to have high affinity for silver.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session86hbrurg7eqsqhc1m6638gbiuak85id8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once