Publications by authors named "Myrto Denaxa"

Inhibition in the mammalian cerebral cortex is mediated by a small population of highly diverse GABAergic interneurons. These largely local neurons are interspersed among excitatory projection neurons and exert pivotal regulation on the formation and function of cortical circuits. We are beginning to understand the extent of GABAergic neuron diversity and how this is generated and shaped during brain development in mice and humans.

View Article and Find Full Text PDF

Rho GTPases, among them Rac1 and Rac3, are major transducers of extracellular signals and are involved in multiple cellular processes. In cortical interneurons, the neurons that control the balance between excitation and inhibition of cortical circuits, Rac1 and Rac3 are essential for their development. Ablation of both leads to a severe reduction in the numbers of mature interneurons found in the murine cortex, which is partially due to abnormal cell cycle progression of interneuron precursors and defective formation of growth cones in young neurons.

View Article and Find Full Text PDF

Somatostatin (SST) expressing interneurons are the second most abundant group of inhibitory neurons in the neocortex. They mainly target the apical dendrites of excitatory pyramidal cells and are implicated in feedforward and feedback inhibition. In the present study, we employ a conditional knockout mouse, in which the transcription factor Satb1 is selectively deleted in SST-expressing interneurons resulting to the reduction of their number across the somatosensory barrel field.

View Article and Find Full Text PDF

Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY).

View Article and Find Full Text PDF

The prefrontal cortex (PFC) is characterized by protracted maturation. The cellular mechanisms controlling the early development of prefrontal circuits are still largely unknown. Our study delineates the developmental cellular processes in the mouse medial PFC (mPFC) during the second and the third postnatal weeks and characterizes their contribution to the changes in network activity.

View Article and Find Full Text PDF

The cerebral cortex contains two main neuronal cell populations: the excitatory pyramidal neurons and the inhibitory interneurons, which constitute 20-30% of all cortical neurons. Cortical interneurons are characterized by a remarkable morphological, molecular and functional diversity. A swathe of research activity over the last 20 years has sought to determine how cortical interneurons acquire their mature cellular and functional features, and has identified a number of transcription factors that function at different stages of interneuron development.

View Article and Find Full Text PDF

Neuronal development is regulated by a complex combination of environmental and genetic factors. Assessing the relative contribution of each component is a complicated task, which is particularly difficult in regards to the development of γ-aminobutyric acid (GABA)ergic cortical interneurons (CIs). CIs are the main inhibitory neurons in the cerebral cortex, and they play key roles in neuronal networks, by regulating both the activity of individual pyramidal neurons, as well as the oscillatory behavior of neuronal ensembles.

View Article and Find Full Text PDF

The mammalian cortex consists of two main neuronal types: the principal excitatory pyramidal neurons (PNs) and the inhibitory interneurons (INs). The interplay between these two neuronal populations - which drive excitation and inhibition (E/I balance), respectively - is crucial for controlling the overall activity in the brain. A number of neurological and psychiatric disorders have been associated with changes in E/I balance.

View Article and Find Full Text PDF

Cortical networks are composed of excitatory projection neurons and inhibitory interneurons. Finding the right balance between the two is important for controlling overall cortical excitation and network dynamics. However, it is unclear how the correct number of cortical interneurons (CIs) is established in the mammalian forebrain.

View Article and Find Full Text PDF
Article Synopsis
  • This document serves as a correction to a previously published article in Nature, identified by its DOI.
  • The correction addresses specific errors or inaccuracies that were found in the original article.
  • Ensuring the accuracy of scientific literature is crucial for maintaining the integrity of research and its findings.
View Article and Find Full Text PDF

Multiple populations of wake-promoting neurons have been characterized in mammals, but few sleep-promoting neurons have been identified. Wake-promoting cell types include hypocretin and GABA (γ-aminobutyric-acid)-releasing neurons of the lateral hypothalamus, which promote the transition to wakefulness from non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Here we show that a subset of GABAergic neurons in the mouse ventral zona incerta, which express the LIM homeodomain factor Lhx6 and are activated by sleep pressure, both directly inhibit wake-active hypocretin and GABAergic cells in the lateral hypothalamus and receive inputs from multiple sleep-wake-regulating neurons.

View Article and Find Full Text PDF

Cortical interneurons are characterized by extraordinary functional and morphological diversity. Although tremendous progress has been made in uncovering molecular and cellular mechanisms implicated in interneuron generation and function, several questions still remain open. Rho-GTPases have been implicated as intracellular mediators of numerous developmental processes such as cytoskeleton organization, vesicle trafficking, transcription, cell cycle progression, and apoptosis.

View Article and Find Full Text PDF

The generation of cortical interneuron subtypes is controlled by genetic programs that are activated in the ventral forebrain and unfold during the prolonged period of inhibitory neuron development. The LIM-homeodomain protein LHX6 is critical for the development of all cortical interneurons originating in the medial ganglionic eminence, but the molecular mechanisms that operate downstream of LHX6 to control the terminal differentiation of somatostatin- and parvalbumin-expressing interneurons within the cortex remain unknown. Here, we provide evidence that the nuclear matrix and genome organizer protein SATB1 is induced by neuronal activity and functions downstream of Lhx6 to control the transition of tangentially migrating immature interneurons into the terminally differentiated Somatostatin (SST)-expressing subtype.

View Article and Find Full Text PDF

Deletion of LIM homeodomain transcription factor-encoding Lhx6 gene in mice results in defective tangential migration of cortical interneurons and failure of differentiation of the somatostatin (Sst)- and parvalbumin (Pva)-expressing subtypes. Here, we characterize a novel hypomorphic allele of Lhx6 and demonstrate that reduced activity of this locus leads to widespread differentiation defects in Sst(+) interneurons, but relatively minor and localized changes in Pva(+) interneurons. The reduction in the number of Sst-expressing cells was not associated with a loss of interneurons, because the migration and number of Lhx6-expressing interneurons and expression of characteristic molecular markers, such as calretinin or Neuropeptide Y, were not affected in Lhx6 hypomorphic mice.

View Article and Find Full Text PDF

We describe the role of Sox6 in cortical interneuron development, from a cellular to a behavioral level. We identify Sox6 as a protein expressed continuously within MGE-derived cortical interneurons from postmitotic progenitor stages into adulthood. Both its expression pattern and null phenotype suggests that Sox6 gene function is closely linked to that of Lhx6.

View Article and Find Full Text PDF

Genes encoding LIM homeodomain transcription factors are implicated in cell type specification and differentiation during embryogenesis. Two closely related members of this family, Lhx6 and Lhx7, are expressed in the ectomesenchyme of the maxillary and mandibular processes and have been suggested to control patterning of the first branchial arch (BA1) and odontogenesis. However, mice homozygous for single mutations either have no cranial defects (Lhx6) or show only cleft palate (Lhx7).

View Article and Find Full Text PDF

The cerebral cortex contains two main neuronal cell populations, the excitatory glutamatergic (pyramidal) neurons and the inhibitory interneurons, which synthesize GABA and constitute 20-30% of all cortical neurons. In contrast to the mostly homogeneous population of projection neurons, cortical interneurons are characterized by remarkable morphological, molecular, and functional diversity. Among the markers that have been used to classify cortical interneurons are the calcium-binding proteins parvalbumin and calretinin and the neuropeptide somatostatin, which in rodents identify mostly nonoverlapping interneuron subpopulations.

View Article and Find Full Text PDF

Approximately 30 kb of genomic DNA enclosing the Adh locus from the medfly, Ceratitis capitata have been cloned and about 15 kb has been structurally and functionally characterized. The locus consists of two genes, Adh-1 and Adh-2, separated by an intergenic region, which is polymorphic in size ranging from approximately 6.4 kb to 8.

View Article and Find Full Text PDF

The neural cell adhesion molecule TAG-1 has been implicated in the tangential migration of neurons of the caudal medulla and of cortical interneurons. In the former case, protein is expressed by the neurons as they migrate, and blocking its function results in altered and reduced migration in vitro. In the latter case, protein is expressed, in part, by the pathway the interneurons use to reach the cortex, and in vitro experiments propose a role for TAG-1 in this system, as well.

View Article and Find Full Text PDF

Little is known about the molecular mechanisms and intrinsic factors that are responsible for the emergence of neuronal subtype identity. Several transcription factors that are expressed mainly in precursors of the ventral telencephalon have been shown to control neuronal specification, but it has been unclear whether subtype identity is also specified in these precursors, or if this happens in postmitotic neurons, and whether it involves the same or different factors. SOX1, an HMG box transcription factor, is expressed widely in neural precursors along with the two other SOXB1 subfamily members, SOX2 and SOX3, and all three have been implicated in neurogenesis.

View Article and Find Full Text PDF

Cell adhesion molecules (CAMs) of the immunoglobulin superfamily (IgSF) exhibit restricted spatial and temporal expression profiles requiring a tight regulatory program during development. The rodent glycoprotein TAG-1 and its orthologs TAX-1 in the human and axonin-1 in chick are cell adhesion molecules belonging to the contactin/F3 subgroup of the IgSF. TAG-1 is expressed in restricted subsets of central and peripheral neurons, not only during development but also in adulthood, and is implicated in neurite outgrowth, axon guidance and fasciculation, as well as neuronal migration.

View Article and Find Full Text PDF