Publications by authors named "Myrtle Davis"

Chronic heart failure is one of the most common reasons for hospitalization. Current risk stratification is based on ejection fraction, whereas many arrhythmic events occur in patients with relatively preserved ejection fraction. We aim to investigate the mechanistic link between proarrhythmic abnormalities, reduced contractility and diastolic dysfunction in heart failure, using electromechanical modelling and simulations of human failing cardiomyocytes.

View Article and Find Full Text PDF

Seizure liability remains a significant cause of attrition throughout drug development. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. We assessed the activity of 15 pro-seizurogenic compounds (7 CNS active therapies, 4 GABA receptor antagonists, and 4 other reported seizurogenic compounds) using automated electrophysiology against a panel of 14 ion channels (Nav1.

View Article and Find Full Text PDF

Much has been written and said about the promise and excitement of microphysiological systems, miniature devices that aim to recreate aspects of human physiology on a chip. The rapid explosion of the offerings and persistent publicity placed high expectations on both product manufacturers and regulatory agencies to adopt the data. Inevitably, discussions of where this technology fits in chemical testing paradigms are ongoing.

View Article and Find Full Text PDF
Article Synopsis
  • BMS-986020, a drug being tested for its effects on lysophosphatidic acid receptors, showed hepatobiliary toxicity in a Phase 2 clinical trial, leading to elevated liver enzymes and bile acids.
  • Nonclinical studies indicated that BMS-986020's toxicity is due to its ability to inhibit specific liver transporters and mitochondrial function, unlike two other similar compounds (BMS-986234 and BMS-986278) that showed minimal effects.
  • The findings suggest that the hepatobiliary toxicity observed in patients taking BMS-986020 is caused by mechanisms unrelated to its action as an LPA antagonist, supporting that its adverse effects are not seen with the other tested compounds.
View Article and Find Full Text PDF

The integrative responses of the cardiovascular (CV) system are essential for maintaining blood flow to provide oxygenation, nutrients, and waste removal for the entire body. Progress has been made in independently developing simple in vitro models of two primary components of the CV system, namely the heart (using induced pluripotent stem-cell derived cardiomyocytes) and the vasculature (using endothelial cells and smooth muscle cells). These two in vitro biomimics are often described as immature and simplistic, and typically lack the structural complexity of native tissues.

View Article and Find Full Text PDF

Many in vitro gastrointestinal models have been developed with the hope that they will continue to improve in their similarity to the organs from which they were isolated. Intestinal organoids isolated from various species are now being used to investigate physiology and pathophysiology. In this study, intestinal stem cells were isolated from adult rat duodenum and culture conditions were optimized to promote the growth, differentiation and development of 3D organoids.

View Article and Find Full Text PDF

Cardiovascular (CV) toxicity from cancer therapy is a significant and growing concern. Conventional oncology clinical trial designs focused singularly on cancer treatment efficacy have not provided sufficient information on both CV risk factors and outcomes. Similarly, traditional CV trials evaluating standard interventions typically exclude cancer patients, particularly those actively receiving cancer therapy.

View Article and Find Full Text PDF

The human kidney contains approximately one million nephrons. As the functional unit of the kidney, the nephron affords an opportunity to approximate the kidney at a microphysiological scale. Recent emergence of physiologically accurate human tissue models has radically advanced the possibilities of mimicking organ biology and multi-organ combinations in vitro.

View Article and Find Full Text PDF

The lung is a complex organ; it is both the initial barrier for inhaled agents and the site of metabolism and therapeutic effect for a subset of systemically administered drugs. Comprised of more than 40 cell types that are responsible for various important functions, the lung's complexity contributes to the subsequent challenges in developing complex in vitro co-culture models (also called microphysiological systems (MPS), complex in vitro models or organs-on-a-chip). Although there are multiple considerations and limitations in the development and qualification of such in vitro systems, MPS exhibit great promise in the fields of pharmacology and toxicology.

View Article and Find Full Text PDF

To achieve therapeutic goals, many cancer chemotherapeutics are used at doses close to their maximally tolerated doses. Thus, it may be expected that when therapies are combined at therapeutic doses, toxicity profiles may change. In many ways, prediction of synergistic toxicities for drug combinations is similar to predicting synergistic efficacy, and is dependent upon building hypotheses from molecular mechanisms of drug toxicity.

View Article and Find Full Text PDF

Two new cassaine-type diterpenoids, namely erythrofordins D (1) and E (2), sourced from a Cameroon collection of Erythrophleum suaveolens were isolated and assessed for anti-tumor activity. In the NCI-60 cancer cell assay, erythrofordins D (1) and E (2) were found to be cytotoxic in the low micro molar ranges with a mean GI value of 2.45 and 0.

View Article and Find Full Text PDF

Targeting the anti-apoptotic protein Mcl-1 holds a promise to improve therapy of multiple types of Mcl-1 dependent cancers but raises concerns of on-target cardiotoxicity due to the presence and reported role of Mcl-1 in heart. Herein, we investigated the importance of Mcl-1 in the survival and contractile function of human pluripotent stem cell-derived cardiomyocytes in culture. Effective knockdown of Mcl-1 with siRNAs reproducibly resulted in early (measured at Day 3) marginal alterations in caspase 3/7 activity, LDH leakage, ATP content and cellular impedance.

View Article and Find Full Text PDF

Approved and marketed drugs are frequently studied in nonclinical models to evaluate the potential application to additional disease indications or to gain insight about molecular mechanisms of action. A survey of the literature reveals that nonclinical experimental designs ( or ) often include evaluation of drug concentrations or doses that are much higher than what can be achieved in patients (i.e.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is a major, dose-limiting adverse effect experienced by cancer patients. Advancements in mechanism-based risk mitigation and effective treatments for CIPN can be aided by suitable in vitro assays. To this end, we developed a multiparametric morphology-centered rat dorsal root ganglion (DRG) assay.

View Article and Find Full Text PDF

Introduction: The ICH S7B guidelines recommend that all new chemical entities should be subjected to hERG repolarization screening due to its association with life-threatening "Torsades de Pointes" (TdP) arrhythmia. However, it has become evident that not all hERG channel inhibitors result in TdP and not all compounds that induce QT prolongation and TdP necessarily inhibit hERG. In order to address the limitations of the S7B/E14 guidelines, the FDA through a public/private partnership initiated the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative to examine the possible modification and refinement of the ICH E14/S7B guidelines.

View Article and Find Full Text PDF

Utilization of validated CFU-GM assays for myelotoxicity screening is hampered by its labor-intensive and low-throughput nature. Herein, we transformed the defined CFU-GM assay conditions and IC90 endpoint into a higher throughput format. Human CD34(+) hematopoietic progenitors were cultured in a 96-well plate for 14 days with the same cytokine (rhGM-CSF) used in the CFU-GM assay.

View Article and Find Full Text PDF

There is a need to develop mechanism-based assays to better inform risk of cardiotoxicity. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are rapidly gaining acceptance as a biologically relevant in vitro model for use in drug discovery and cardiotoxicity screens. Utilization of hiPSC-CMs for mechanistic investigations would benefit from confirmation of the expression and activity of cellular pathways that are known to regulate cardiac myocyte viability and function.

View Article and Find Full Text PDF

Introduction: 5-Fluoro-2'-deoxycytidine (FdCyd; NSC48006), a fluoropyrimidine nucleoside inhibitor of DNA methylation, is degraded by cytidine deaminase (CD). Pharmacokinetic evaluation was carried out in cynomolgus monkeys in support of an ongoing phase I study of the PO combination of FdCyd and the CD inhibitor tetrahydrouridine (THU; NSC112907).

Methods: Animals were dosed intravenously (IV) or per os (PO).

View Article and Find Full Text PDF

Combinations of anticancer agents may have synergistic anti-tumor effects, but enhanced hematological toxicity often limit their clinical use. We examined whether "microarray profiles" could be used to compare early molecular responses following a single dose of agents administered individually with that of the agents administered in a combination. We compared the mRNA responses within bone marrow of Sprague-Dawley rats after a single 30 min treatment with topotecan at 4.

View Article and Find Full Text PDF

NSC-743380 (1-[(3-chlorophenyl)-methyl]-1H-indole-3-carbinol) is in early stages of development as an anticancer agent. Two metabolites reflect sequential conversion of the carbinol functionality to a carboxaldehyde and the major metabolite, 1-[(3-chlorophenyl)-methyl]-1H-indole-3-carboxylic acid. In an exploratory toxicity study in rats, NSC-743380 induced elevations in liver-associated serum enzymes and biliary hyperplasia.

View Article and Find Full Text PDF
Article Synopsis
  • Batracylin (NSC-320846) is a cancer-fighting drug that inhibits DNA topoisomerases I and II but caused serious bladder issues when tested in Phase I clinical trials.
  • In studies on Fischer 344 rats, high doses of batracylin led to significant kidney and bone marrow damage, with evidence of DNA damage observed.
  • Treatment with Mesna, which usually prevents bladder toxicity from other drugs, did not help with the toxicity caused by batracylin, suggesting its harmful effects are due to DNA damage rather than a different mechanism found in other anticancer drugs.
View Article and Find Full Text PDF

Cardiotoxicity resulting from direct myocyte damage has been a known complication of cancer treatment for decades. More recently, the emergence of hypertension as a clinically significant side effect of several new agents has been recognized as adversely affecting cancer treatment outcomes. With cancer patients living longer, in part because of treatment advances, these adverse events have become increasingly important to address.

View Article and Find Full Text PDF

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are being used as an in vitro model system in cardiac biology and in drug discovery (e.g., cardiotoxicity testing).

View Article and Find Full Text PDF