Lactic acid (LA) is an important biobased platform chemical, with potential applications in synthetising a wide range of chemical products or serving as feedstock for various bioprocesses. Industrial LA production via pure culture fermentation is characterized by high operational costs and utilizes food-grade sugars, thereby reducing the feasibility of LA applications. In this context, our research focussed on valorising the largest dairy side stream, cheese whey permeate, through the use of mixed microbial communities.
View Article and Find Full Text PDFBackground: It is increasingly recognized that conventional food production systems are not able to meet the globally increasing protein needs, resulting in overexploitation and depletion of resources, and environmental degradation. In this context, microbial biomass has emerged as a promising sustainable protein alternative. Nevertheless, often no consideration is given on the fact that the cultivation conditions affect the composition of microbial cells, and hence their quality and nutritional value.
View Article and Find Full Text PDFMedium chain carboxylic acids (MCCA) such as caproic acid have a plethora of applications, ranging from food additives to bioplastics. MCCA can be produced via microbial chain elongation using waste and side-streams as substrates, a process that can be more sustainable than conventional production routes. Most chain elongation studies have focused on mesophilic conditions, with only two recent studies hinting at the possibility of thermophilic chain elongation, but a systematic study of its mechanisms is lacking.
View Article and Find Full Text PDFOrganic fertilizers and especially microbial biomass, also known as microbial fertilizer, can enable a paradigm shift to the conventional fertilizer-to-food chain, particularly when produced on secondary resources. Microbial fertilizers are already common practice (e.g.
View Article and Find Full Text PDFMicrobial protein (MP) is back on the table after decades of slumbering interest. One-carbon (C1) substrates are attractive for MP production due to their efficient production from CO and renewable electricity, linking carbon capture to food while circumventing agriculture. Here we compared all reported combinations of C1 (formate/methanol/methane) and microorganisms (bacteria/yeasts) in terms of engineering and biomass quality parameters, focusing on the amino acid match with human requirements.
View Article and Find Full Text PDFIncreasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production-the presence of pathogens or toxicants-can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas.
View Article and Find Full Text PDFMicrobial cells experience physiological changes due to environmental change, such as pH and temperature, the release of bactericidal agents, or nutrient limitation. This has been shown to affect community assembly and physiological processes (e.g.
View Article and Find Full Text PDFThe rapidly increasing demand for protein has led to the pursuit of new protein sources, among which microbial protein (MP) is one of the most promising. Although the nutritional properties of MP are important and often well-studied, the sensory properties of the microbial cells will in part determine the commercial success of the product and are much less investigated. Here we assessed the odor fingerprint of dried bacteria originating from pure cultures and enriched mixed microbial communities using an electronic nose (e-nose).
View Article and Find Full Text PDFProduction of microbial protein (MP) from recovered resources - e.g. CO-sourced formate and acetate - could provide protein while enabling CO capture.
View Article and Find Full Text PDFConsortia of aerobic heterotrophic bacteria (AHB) have potential as sustainable microbial protein (MP) source in animal feed. A systematic screening of the nutritional value and safety of AHB biomass from full-scale activated sludge plants from 25 companies in the food sector was performed. The variable protein content (21-49%) was positively correlated with biomass-specific nitrogen loading rate and negatively with sludge retention time (SRT).
View Article and Find Full Text PDFThe transition to sustainable agriculture and horticulture is a societal challenge of global importance. Fertilization with a minimum impact on the environment can facilitate this. Organic fertilizers can play an important role, given their typical release pattern and production through resource recovery.
View Article and Find Full Text PDFLivestock production is utilizing large amounts of protein-rich feed ingredients such as soybean meal. The proven negative environmental impacts of soybean meal production incentivize the search for alternative protein sources. One promising alternative is Microbial Protein (MP), i.
View Article and Find Full Text PDFPurple non-sulphur bacteria (PNSB) are phototrophic microorganisms, which increasingly gain attention in plant production due to their ability to produce and accumulate high-value compounds that are beneficial for plant growth. Remarkable features of PNSB include the accumulation of polyphosphate, the production of pigments and vitamins and the production of plant growth-promoting substances (PGPSs). Scattered case studies on the application of PNSB for plant cultivation have been reported for decades, yet a comprehensive overview is lacking.
View Article and Find Full Text PDFEach ton of organic household waste that is collected, transported and composted incurs costs (€75/ton gate fee). Reducing the mass and volume of kitchen waste (KW) at the point of collection can diminish transport requirements and associated costs, while also leading to an overall reduction in gate fees for final processing. To this end, the objective of this research was to deliver a proof of concept for the so-called "urban pre-composter"; a bioreactor for the decentralized, high-rate pre-treatment of KW, that aims at mass and volume reduction at the point of collection.
View Article and Find Full Text PDFBiofuels are viewed as the answer to safeguard the currently challenged energy security. To this end, the present study provides a comparison between approaches regarding microalgal biomass conversion to bioenergy, with a view on sustainable implementation. The energetic valorization of Chlorella vulgaris biomass cultivated under heterotrophic, sulfur-limited conditions was investigated through the biofuels biodiesel, biogas (biomethane) and combustible dry biomass.
View Article and Find Full Text PDFThe present study aimed at: (1) determining the effect of sulfur addition on biomass growth and (2) assessing the effect of sulfur, phosphorus and nitrogen limitation on lipid accumulation by C. vulgaris SAG 211-11b. The sulfur cellular content was more than two-fold higher under nitrogen and phosphorus limitation (0.
View Article and Find Full Text PDFThe goal of the present study was to investigate the pH range that can support the growth of C. vulgaris, and, more specifically, to identify the optimal pH for the microalga's growth, under heterotrophic conditions. Furthermore, the effect of pH on the accumulation of intracellular lipids was studied.
View Article and Find Full Text PDF