Three-dimensional cubic Fm3[combining macron]m mesoporous copper-containing ethane-bridged PMO materials have been prepared through a direct-synthesis method at room temperature in the presence of cetyltrimethylammonium bromide as surfactant. The obtained materials have been unambiguously characterized in detail by several sophisticated techniques, including XRD, UV-Vis-Dr, TEM, elemental mapping, continuous-wave and pulsed EPR spectroscopy. The results show that at lower copper loading, the Cu(2+) species are well dispersed in the Cu-PMO materials, and mainly exist as mononuclear Cu(2+) species.
View Article and Find Full Text PDFThe pore walls of phenylene-bridged periodic mesoporous organosilicas (B-PMOs) can be crystal-like or amorphous depending on the synthesis conditions. Here, spin-probe electron paramagnetic resonance (EPR) is used to monitor the adsorption of nitroxide radicals on three types of B-PMO with varying pore size and wall characteristics. Nitroxide radicals with varying polarity are chosen as probes to mimic guest molecules with different properties.
View Article and Find Full Text PDFThe control of the formation process during and after self-assembly is of utmost importance to achieve well structured, controlled template-assisted mesoporous titania materials with the desired properties for various applications via the evaporation induced self-assembly method (EISA). The present paper reports on the large influence of the thermal stabilization and successive template removal on the pore structure of a mesostructured TiO(2) material using the diblock copolymer Brij 58 as surfactant. A controlled thermal stabilization (temperature and duration) allows one to tailor the final pore size and uniformity much more precise by influencing the self-assembly of the template.
View Article and Find Full Text PDFDifferent types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts.
View Article and Find Full Text PDFA promising method for the production of few-layer graphene (FLG) is microwave plasma-enhanced chemical vapour deposition (MW PECVD). However, the growth mechanism of PECVD-synthesized FLG is not completely understood. The aim of this work was to investigate the initial stages of the growth process of FLG deposited by MW PECVD on several substrates (quartz, silicon, platinum).
View Article and Find Full Text PDFFramework-incorporated vanadium mesoporous silica materials with different contents in vanadium were obtained by a facile, direct synthesis at room temperature, using VOSO4 x 5H2O as the vanadium precursor. The porous characteristics of the samples and the coordination environment of the vanadia in the structure were studied by a combination of techniques: X-ray diffraction, N2-adsorption/desorption, FT-Raman, FTIR-PAS and UV-Vis-DR, electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy. A structural comparison is made using pulsed EPR and ENDOR spectroscopic techniques between vanadia deposited on the surface of MCM-41 by the Molecular Designed Dispersion method and as-synthesised samples of vanadia incorporated in the mesoporous silica framework using the above-mentioned synthesis method.
View Article and Find Full Text PDFMesoporous SBA-16 and SBA-15 were studied in order to control their possible morphologies. SBA-16 is synthesized using a silicon source (tetraethoxysilane, TEOS) and a ternary system consisting of surfactant F127 (EO106PO70EO106), water, and butanol. The same ternary system, with higher butanol concentration, is used to form SBA-15 material as well.
View Article and Find Full Text PDF