Publications by authors named "Myriam Pannetier Lecoeur"

Carbon nanotubes (CNTs) can be incorporated in various materials to enhance their mechanical or electrical properties. Information on their precise concentration and local distribution is difficult to access non-invasively. For example, electron microscopy studies require cutting of samples.

View Article and Find Full Text PDF

Measuring fast neuronal signals is the domain of electrophysiology and magnetophysiology. While electrophysiology is easier to perform, magnetophysiology avoids tissue-based distortions and measures a signal with directional information. At the macroscale, magnetoencephalography (MEG) is established, and at the mesoscale, visually evoked magnetic fields have been reported.

View Article and Find Full Text PDF

Neuronal electrical activity is widely studied in vivo, and the ability to measure its magnetic equivalent to obtain an undisturbed signal with both amplitude and direction information leading to neuronal signal mapping would be a promising tool for neuroscience. To provide such a tool, a probe with spin-electronics-based magnetic sensors with orthogonal axes of sensitivity for two directions of measurement is realized, thanks to a local magnetization re-orientation technique induced by Joule heating. This probe is tested under in vivo measurement conditions in the brain of an anesthetized rat.

View Article and Find Full Text PDF

Neuronal activity generates ionic flows and thereby both magnetic fields and electric potential differences, i.e., voltages.

View Article and Find Full Text PDF

The electrical activity of brain, heart and skeletal muscles generates magnetic fields but these are recordable only macroscopically, such as in magnetoencephalography, which is used to map neuronal activity at the brain scale. At the local scale, magnetic fields recordings are still pending because of the lack of tools that can come in contact with living tissues. Here we present bio-compatible sensors based on Giant Magneto-Resistance (GMR) spin electronics.

View Article and Find Full Text PDF