In leaves of C3 and C4 plants, stomata open during the day to favor CO2 entry for photosynthesis and close at night to prevent inefficient transpiration of water vapor. The circadian clock paces rhythmic stomatal movements throughout the diel (24-h) cycle. Leaf transitory starch is also thought to regulate the diel stomatal movements, yet the underlying mechanisms across time (key moments) and space (relevant leaf tissues) remain elusive.
View Article and Find Full Text PDFChanges in plant abiotic environments may alter plant virus epidemiological traits, but how such changes actually affect their quantitative relationships is poorly understood. Here, we investigated the effects of water deficit on Cauliflower mosaic virus (CaMV) traits (virulence, accumulation, and vectored-transmission rate) in 24 natural Arabidopsis thaliana accessions grown under strictly controlled environmental conditions. CaMV virulence increased significantly in response to water deficit during vegetative growth in all A.
View Article and Find Full Text PDFThe formation of Casparian strips (CS) and the deposition of suberin at the endodermis of plant roots are thought to limit the apoplastic transport of water and ions. We investigated the specific role of each of these apoplastic barriers in the control of hydro-mineral transport by roots and the consequences on shoot growth. A collection of Arabidopsis thaliana mutants defective in suberin deposition and/or CS development was characterized under standard conditions using a hydroponic system and the Phenopsis platform.
View Article and Find Full Text PDFPlant virus pathogenicity is expected to vary with changes in the abiotic environment that affect plant physiology. Conversely, viruses can alter the host plant response to additional stimuli from antagonism to mutualism depending on the virus, the host plant and the environment. Ecological theory, specifically the CSR framework of plant strategies developed by Grime and collaborators, states that plants cannot simultaneously optimize resistance to both water deficit and pathogens.
View Article and Find Full Text PDFIt is clearly established that there is not a unique response to soil water deficit but that there are as many responses as soil water deficit characteristics: Drought intensity, drought duration, and drought position during plant cycle. For a same soil water deficit, responses can also differ on plant genotype within a same species. In spite of this variability, at least for leaf production and expansion processes, robust tendencies can be extracted from the literature when similar watering regimes are compared.
View Article and Find Full Text PDFBackground And Aims: The question of which cellular mechanisms determine the variation in leaf size has been addressed mainly in plants with simple leaves. It is addressed here in tomato taking into consideration the expected complexity added by the several lateral appendages making up the compound leaf, the leaflets.
Methods: Leaf and leaflet areas, epidermal cell number and areas, and endoreduplication (co-) variations were analysed in Solanum lycopersicum considering heteroblastic series in a wild type (Wva106) and an antisense mutant, the Pro35S:Slccs52AAS line, and upon drought treatments.
Plants suffer from a broad range of abiotic and biotic stresses that do not occur in isolation but often simultaneously. Productivity of natural and agricultural systems is frequently constrained by water limitation, and the frequency and duration of drought periods will likely increase due to global climate change. In addition, phytoviruses represent highly prevalent biotic threat in wild and cultivated plant species.
View Article and Find Full Text PDFHigh-throughput phenotyping of plant traits is a powerful tool to further our understanding of plant growth and its underlying physiological, molecular, and genetic determinisms. This protocol describes the methodology of a standard phenotyping experiment in PHENOPSIS automated platform, which was engineered in INRA-LEPSE (https://www6.montpellier.
View Article and Find Full Text PDFBackground: Plant science uses increasing amounts of phenotypic data to unravel the complex interactions between biological systems and their variable environments. Originally, phenotyping approaches were limited by manual, often destructive operations, causing large errors. Plant imaging emerged as a viable alternative allowing non-invasive and automated data acquisition.
View Article and Find Full Text PDFAcclimation to water deficit (WD) enables plants to maintain growth under unfavorable environmental conditions, although the mechanisms are not completely understood. In this study, the natural variation of long-term acclimation to moderate and severe soil WD was investigated in 18 Arabidopsis () accessions using PHENOPSIS, an automated phenotyping platform. Soil water content was adjusted at an early stage of plant development and maintained at a constant level until reproductive age was achieved.
View Article and Find Full Text PDFFollowing the recent development of high-throughput phenotyping platforms for plant research, the number of individual plants grown together in a same experiment has raised, sometimes at the expense of pot size. However, root restriction in excessively small pots affects plant growth and carbon partitioning, and may interact with other stresses targeted in these experiments. In work reported here, we investigated the interactive effects of pot size and soil water deficit on multiple growth-related traits from the cellular to the whole-plant scale in oilseed rape (Brassica napus L.
View Article and Find Full Text PDFBackground: Effects of abiotic and biotic stresses on plant photosynthetic performance lead to fitness and yield decrease. The maximum quantum efficiency of photosystem II (F v/F m) is a parameter of chlorophyll fluorescence (ChlF) classically used to track changes in photosynthetic performance. Despite recent technical and methodological advances in ChlF imaging, the spatio-temporal heterogeneity of F v/F m still awaits for standardized and accurate quantification.
View Article and Find Full Text PDFHow genetic factors control plant performance under stressful environmental conditions is a central question in ecology and for crop breeding. A multivariate framework was developed to examine the genetic architecture of performance-related traits in response to interacting environmental stresses. Ecophysiological and life history traits were quantified in the Arabidopsis thaliana Ler × Cvi mapping population exposed to constant soil water deficit and high air temperature.
View Article and Find Full Text PDFMutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR) are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping.
View Article and Find Full Text PDFInorganic phosphate (Pi) and Zinc (Zn) are essential nutrients for normal plant growth. Interaction between these elements has been observed in many crop plants. Despite its agronomic importance, the biological significance and genetic basis of this interaction remain largely unknown.
View Article and Find Full Text PDFWater stresses reduce plant growth but there is no consensus on whether carbon metabolism has any role in this reduction. Sugar starvation resulting from stomatal closure is often proposed as a cause of growth impairment under long-term or severe water deficits. However, growth decreases faster than photosynthesis in response to drought, leading to increased carbohydrate stores under short-term or moderate water deficits.
View Article and Find Full Text PDFWiley Interdiscip Rev Dev Biol
April 2014
Leaves of flowering plants are produced from the shoot apical meristem at regular intervals and they grow according to a developmental program that is determined by both genetic and environmental factors. Detailed frameworks for multiscale dynamic analyses of leaf growth have been developed in order to identify and interpret phenotypic differences caused by either genetic or environmental variations. They revealed that leaf growth dynamics are non-linearly and nonhomogeneously distributed over the lamina, in the leaf tissues and cells.
View Article and Find Full Text PDFLight and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes.
View Article and Find Full Text PDFRNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain-containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) and cytochrome b (cob) transcripts at the nad5-1550 and cob-908 sites, respectively. Its putative ortholog, MITOCHONDRIAL EDITING FACTOR29, fulfills the same role in Arabidopsis thaliana.
View Article and Find Full Text PDFEnormous progress has been achieved understanding the molecular mechanisms regulating endoreduplication. By contrast, how this process is coordinated with the cell cycle or cell expansion and contributes to overall growth in multicellular systems remains unclear. A holistic approach was used here to give insight into the functional links between endoreduplication, cell division, cell expansion, and whole growth in the Arabidopsis (Arabidopsis thaliana) leaf.
View Article and Find Full Text PDFBackground: Renewed interest in plant×environment interactions has risen in the post-genomic era. In this context, high-throughput phenotyping platforms have been developed to create reproducible environmental scenarios in which the phenotypic responses of multiple genotypes can be analysed in a reproducible way. These platforms benefit hugely from the development of suitable databases for storage, sharing and analysis of the large amount of data collected.
View Article and Find Full Text PDFLeaf expansion is the central process by which plants colonize space, allowing energy capture and carbon acquisition. Water and carbon emerge as main limiting factors of leaf expansion, but the literature remains controversial about their respective contributions. Here, we tested the hypothesis that the importance of hydraulics and metabolics is organized according to both dark/light fluctuations and leaf ontogeny.
View Article and Find Full Text PDFGrowth and carbon (C) fluxes are severely altered in plants exposed to soil water deficit. Correspondingly, it has been suggested that plants under water deficit suffer from C shortage. In this study, we test this hypothesis in Arabidopsis (Arabidopsis thaliana) by providing an overview of the responses of growth, C balance, metabolites, enzymes of the central metabolism, and a set of sugar-responsive genes to a sustained soil water deficit.
View Article and Find Full Text PDFVariation in leaf development caused by water deficit was analysed in 120 recombinant inbred lines derived from two Arabidopsis thaliana accessions, Ler and An-1. Main effect quantitative trait loci (QTLs) and QTLs in epistatic interactions were mapped for the responses of rosette area, leaf number and leaf 6 area to water deficit. An epistatic interaction between two QTLs affected the response of whole rosette area and individual leaf area but only with effects in well-watered condition.
View Article and Find Full Text PDF