Publications by authors named "Myriam Chaumeil"

Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue.

View Article and Find Full Text PDF

Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation.

View Article and Find Full Text PDF

Humans and mice with mutations in and manifest hallmarks of cerebral small vessel disease (cSVD). Mice with a missense mutation in at amino acid 1344 () exhibit age-dependent intracerebral hemorrhages (ICHs) and brain lesions. Here, we report that this pathology was associated with the loss of myogenic vasoconstriction, an intrinsic vascular response essential for the autoregulation of cerebral blood flow.

View Article and Find Full Text PDF

Spatial transcriptomics couples visual spatial markers with gene expression levels, but slide space and cost limit the number of samples that can be processed. Here, we present a protocol for mounting brains from multiple mice onto a single capture area of a spatial transcriptomics slide. We describe steps for conjoining frozen hippocampal sections from different brains into a single cryostat block, reducing the quantity of reagents required.

View Article and Find Full Text PDF

Career athletes, active military, and head trauma victims are at increased risk for mild repetitive traumatic brain injury (rTBI), a condition that contributes to the development of epilepsy and neurodegenerative diseases. Standard clinical imaging fails to identify rTBI-induced lesions, and novel non-invasive methods are needed. Here, we evaluated if hyperpolarized C magnetic resonance spectroscopic imaging (HP C MRSI) could detect long-lasting changes in brain metabolism 3.

View Article and Find Full Text PDF
Article Synopsis
  • * A study using a mutant mouse model of cerebral small vessel disease (cSVD) revealed age-related issues with blood flow and memory linked to a depletion of phosphatidylinositol 4,5 bisphosphate (PIP) in capillary endothelial cells.
  • * Blocking the enzyme phosphatidylinositol-3-kinase (PI3K), which lowers PIP levels, improved blood vessel dilation and memory function in older mutant mice, suggesting PI3K inhibition could be a potential treatment for cognitive issues related
View Article and Find Full Text PDF

Background: In recent years, the ability of conventional magnetic resonance imaging (MRI), including T contrast-enhanced (CE) MRI, to monitor high-efficacy therapies and predict long-term disability in multiple sclerosis (MS) has been challenged. Therefore, non-invasive methods to improve MS lesions detection and monitor therapy response are needed.

Methods: We studied the combined cuprizone and experimental autoimmune encephalomyelitis (CPZ-EAE) mouse model of MS, which presents inflammatory-mediated demyelinated lesions in the central nervous system as commonly seen in MS patients.

View Article and Find Full Text PDF

Neurons require large amounts of energy, but whether they can perform glycolysis or require glycolysis to maintain energy remains unclear. Using metabolomics, we show that human neurons do metabolize glucose through glycolysis and can rely on glycolysis to supply tricarboxylic acid (TCA) cycle metabolites. To investigate the requirement for glycolysis, we generated mice with postnatal deletion of either the dominant neuronal glucose transporter (GLUT3cKO) or the neuronal-enriched pyruvate kinase isoform (PKM1cKO) in CA1 and other hippocampal neurons.

View Article and Find Full Text PDF

Unlabelled: Neurovascular coupling (NVC), a vital physiological process that rapidly and precisely directs localized blood flow to the most active regions of the brain, is accomplished in part by the vast network of cerebral capillaries acting as a sensory web capable of detecting increases in neuronal activity and orchestrating the dilation of upstream parenchymal arterioles. Here, we report a mutant mouse model of cerebral small vessel disease (cSVD) with age-dependent defects in capillary-to-arteriole dilation, functional hyperemia in the brain, and memory. The fundamental defect in aged mutant animals was the depletion of the minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP ) in brain capillary endothelial cells, leading to the loss of inwardly rectifier K (Kir2.

View Article and Find Full Text PDF
Article Synopsis
  • Traumatic brain injury (TBI) is a significant public health issue, yet effective therapies are still not fully developed despite ongoing research.
  • The Open Data Commons for TBI (ODC-TBI) is a collaborative repository designed to promote data sharing that is easy to find, access, and use, allowing researchers to pool individual subject data for comprehensive machine learning analyses.
  • ODC-TBI's initial analyses include examining subject-level data from previous studies and utilizing machine learning to uncover consistent inflammatory patterns, aiming to enhance research accuracy and meet the increasing demand for open data in the scientific community.
View Article and Find Full Text PDF

Glutamine synthetase (GS) is a key enzyme that metabolizes glutamate into glutamine. While GS is highly enriched in astrocytes, expression in other glial lineages has been noted. Using a combination of reporter mice and cell type-specific markers, we show that GS is expressed in myelinating oligodendrocytes (OL) but not oligodendrocyte progenitor cells of the mouse and human ventral spinal cord.

View Article and Find Full Text PDF

Macrophage activation, first generalized to the M1/M2 dichotomy, is a complex and central process of the innate immune response. Simply, M1 describes the classical proinflammatory activation, leading to tissue damage, and M2 the alternative activation promoting tissue repair. Given the central role of macrophages in multiple diseases, the ability to noninvasively differentiate between M1 and M2 activation states would be highly valuable for monitoring disease progression and therapeutic responses.

View Article and Find Full Text PDF

Lymphocytes and innate immune cells are key drivers of multiple sclerosis (MS) and are the main target of MS disease-modifying therapies (DMT). Ex vivo analyses of MS lesions have revealed cellular heterogeneity and variable T cell levels, which may have important implications for patient stratification and choice of DMT. Although MRI has proven valuable to monitor DMT efficacy, its lack of specificity for cellular subtypes highlights the need for complementary methods to improve lesion characterization.

View Article and Find Full Text PDF

Aberrant metabolism is a key factor in many neurological disorders. The ability to measure such metabolic impairment could lead to improved detection of disease progression, and development and monitoring of new therapeutic approaches. Hyperpolarized C magnetic resonance spectroscopy (MRS) is a developing imaging technique that enables non-invasive measurement of enzymatic activity in real time in living organisms.

View Article and Find Full Text PDF

Alterations in myelin integrity are involved in many neurological disorders and demyelinating diseases, such as multiple sclerosis (MS). Although magnetic resonance imaging (MRI) is the gold standard method to diagnose and monitor MS patients, clinically available MRI protocols show limited specificity for myelin detection, notably in cerebral grey matter areas. Ultrashort echo time (UTE) MRI has shown great promise for direct imaging of lipids and myelin sheaths, and thus holds potential to improve lesion detection.

View Article and Find Full Text PDF

We developed methods for the preparation of hyperpolarized (HP) sterile [2-C]pyruvate to test its feasibility in first-ever human NMR studies following FDA-IND & IRB approval. Spectral results using this MR stable-isotope imaging approach demonstrated the feasibility of investigating human cerebral energy metabolism by measuring the dynamic conversion of HP [2-C]pyruvate to [2-C]lactate and [5-C]glutamate in the brain of four healthy volunteers. Metabolite kinetics, signal-to-noise (SNR) and area-under-curve (AUC) ratios, and calculated [2-C]pyruvate to [2-C]lactate conversion rates (k) were measured and showed similar but not identical inter-subject values.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable.

View Article and Find Full Text PDF

Vorinostat is a histone deacetylase (HDAC) inhibitor that inhibits cell proliferation and induces apoptosis in solid tumors, and is in clinical trials for the treatment of glioblastoma (GBM). The goal of this study was to assess whether hyperpolarized C MRS and magnetic resonance spectroscopic imaging (MRSI) can detect HDAC inhibition in GBM models. First, we confirmed HDAC inhibition in U87 GBM cells and evaluated real-time dynamic metabolic changes using a bioreactor system with live vorinostat-treated or control cells.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is of particular concern for the aging community since there is both increased incidence of TBI and decreased functional recovery in this population. In addition, TBI is the strongest environmental risk factor for development of Alzheimer's disease and other dementia-related neurodegenerative disorders. Critical changes that affect cognition take place over time following the initial insult.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) has long been identified as a precipitating risk factor for higher-order cognitive deficits associated with the frontal and prefrontal cortices (PFC). In addition, mild repetitive TBI (rTBI), in particular, is being steadily recognized to increase the risk of neurodegenerative disease. Thus, further understanding of how mild rTBI changes the pathophysiology of the brain to lead to cognitive impairment is warranted.

View Article and Find Full Text PDF

Complex alterations in cerebral energetic metabolism arise after traumatic brain injury (TBI). To date, methods allowing for metabolic evaluation are highly invasive, limiting our understanding of metabolic impairments associated with TBI pathogenesis. We investigated whether C MRSI of hyperpolarized (HP) [1-C] pyruvate, a non-invasive metabolic imaging method, could detect metabolic changes in controlled cortical injury (CCI) mice (n = 57).

View Article and Find Full Text PDF

Proinflammatory mononuclear phagocytes (MPs) play a crucial role in the progression of multiple sclerosis (MS) and other neurodegenerative diseases. Despite advances in neuroimaging, there are currently limited available methods enabling noninvasive detection of MPs in vivo. Interestingly, upon activation and subsequent differentiation toward a proinflammatory phenotype MPs undergo metabolic reprogramming that results in increased glycolysis and production of lactate.

View Article and Find Full Text PDF

spin spin relaxation time () heterogeneity of hyperpolarized [C,N]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized C signal with a macromolecular relaxation agent revealed that a long- component of the [C,N]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [C,N]urea to be distinguished via multi-exponential analysis. The response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [C,N]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-C-cyclopropane-H.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine.

View Article and Find Full Text PDF

Metabolic imaging of brain tumors using (13)C Magnetic Resonance Spectroscopy (MRS) of hyperpolarized [1-(13)C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM) models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-(13)C] lactate produced from [1-(13)C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-(13)C] lactate. However, to date, lower grade gliomas had not been investigated using this approach.

View Article and Find Full Text PDF