Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function.
View Article and Find Full Text PDFWhile tuberculosis (TB) is a risk factor in HIV-1-infected individuals, the mechanisms by which (Mtb) worsens HIV-1 pathogenesis remain scarce. We showed that HIV-1 infection is exacerbated in macrophages exposed to TB-associated microenvironments due to tunneling nanotube (TNT) formation. To identify molecular factors associated with TNT function, we performed a transcriptomic analysis in these macrophages, and revealed the up-regulation of Siglec-1 receptor.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) are detrimental in most cancers. Controlling their recruitment is thus potentially therapeutic. We previously found that TAMs perform protease-dependent mesenchymal migration in cancer, while macrophages perform amoeboid migration in other tissues.
View Article and Find Full Text PDFMacrophage recruitment is essential for tissue homeostasis but detrimental in most cancers. Tumor-associated macrophages (TAMs) play a key role in cancer progression. Controlling their migration is, thus, potentially therapeutic.
View Article and Find Full Text PDF