TWIST1, an epithelial-mesenchymal transition (EMT) transcription factor, is critical for oncogene-driven non-small cell lung cancer (NSCLC) tumorigenesis. Given the potential of TWIST1 as a therapeutic target, a chemical-bioinformatic approach using connectivity mapping (CMAP) analysis was used to identify TWIST1 inhibitors. Characterization of the top ranked candidates from the unbiased screen revealed that harmine, a harmala alkaloid, inhibited multiple TWIST1 functions, including single-cell dissemination, suppression of normal branching in 3D epithelial culture, and proliferation of oncogene driver-defined NSCLC cells.
View Article and Find Full Text PDFBackground: The transition of epithelial cells from their normal non-motile state to a motile one requires the coordinated action of a number of small GTPases. We have previously shown that epithelial cell migration is stimulated by the coordinated activation of Arf and Rac GTPases. This crosstalk depends upon the assembly of a multi-protein complex that contains the Arf-activating protein cytohesin 2/ARNO and the Rac activating protein Dock180.
View Article and Find Full Text PDFEpithelial cells are largely immotile under normal circumstances, but become motile during development, repair of tissue damage and during cancer metastasis. Numerous growth factors act to initiate epithelial cell movements. Hepatocyte growth factor (HGF) induces many epithelial cell lines to begin crawling.
View Article and Find Full Text PDFARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes.
View Article and Find Full Text PDF