Publications by authors named "Mynthia Cabrera"

Bacterial ribosome rescue pathways that remove ribosomes stalled on mRNAs during translation have been proposed as novel antibiotic targets because they are essential in bacteria and are not conserved in humans. We previously reported the discovery of a family of acylaminooxadiazoles that selectively inhibit trans-translation, the main ribosome rescue pathway in bacteria. Here, we report optimization of the pharmacokinetic and antibiotic properties of the acylaminooxadiazoles, producing MBX-4132, which clears multiple-drug resistant Neisseria gonorrhoeae infection in mice after a single oral dose.

View Article and Find Full Text PDF

Mutations in the Kelch 13 (PfK13) protein are associated with artemisinin resistance. PfK13 is essential for asexual erythrocytic development, but its function is not known. We tagged the PfK13 protein with green fluorescent protein in to study its expression and localization in asexual and sexual stages.

View Article and Find Full Text PDF

Background: Falcipain-2a ([FP2a] PF3D7_1115700) is a Plasmodium falciparum cysteine protease and hemoglobinase. Functional FP2a is required for potent activity of artemisinin, and in vitro selection for artemisinin resistance selected for an FP2a nonsense mutation.

Methods: To investigate associations between FP2a polymorphisms and artemisinin resistance and to characterize the diversity of the enzyme in parasites from the China-Myanmar border, we sequenced the full-length FP2a gene in 140 P falciparum isolates collected during 2004-2011.

View Article and Find Full Text PDF

The 8-aminoquinoline tafenoquine (TFQ), a primaquine derivative, is currently in late-stage clinical development for the radical cure of P. vivax. Here drug interactions between TFQ and chloroquine and six artemisinin-combination therapy (ACT) partner drugs in P.

View Article and Find Full Text PDF

Drug resistance has emerged as one of the greatest challenges facing malaria control. The recent emergence of resistance to artemisinin (ART) and its partner drugs in ART-based combination therapies (ACT) is threatening the efficacy of this front-line regimen for treating Plasmodium falciparum parasites. Thus, an understanding of the molecular mechanisms that underlie the resistance to ART and the partner drugs has become a high priority for resistance containment and malaria management.

View Article and Find Full Text PDF

Currently, the World Health Organization recommends addition of a 0.25-mg base/kg single dose of primaquine (PQ) to artemisinin combination therapies (ACTs) for Plasmodium falciparum malaria as a gametocytocidal agent for reducing transmission. Here, we investigated the potential interactions of PQ with the long-lasting components of the ACT drugs for eliminating the asexual blood stages and gametocytes of in vitro-cultured P.

View Article and Find Full Text PDF

Artemisinin resistance in Plasmodium falciparum parasites in Southeast Asia is a major concern for malaria control. Its emergence at the China-Myanmar border, where there have been more than 3 decades of artemisinin use, has yet to be investigated. Here, we comprehensively evaluated the potential emergence of artemisinin resistance and antimalarial drug resistance status in P.

View Article and Find Full Text PDF

Background: The recent emergence and spread of artemisinin resistance in the Greater Mekong Subregion poses a great threat to malaria control and elimination. A K13-propeller gene (K13), PF3D7_1343700, has been associated lately with artemisinin resistance both in vitro and in vivo. This study aimed to investigate the K13 polymorphisms in Plasmodium falciparum parasites from the China-Myanmar border area where artemisinin use has the longest history.

View Article and Find Full Text PDF

Alternatively activated macrophages (AAM) that accumulate during chronic T helper 2 inflammatory conditions may arise through proliferation of resident macrophages or recruitment of monocyte-derived cells. Liver granulomas that form around eggs of the helminth parasite Schistosoma mansoni require AAM to limit tissue damage. Here, we characterized monocyte and macrophage dynamics in the livers of infected CX3CR1(GFP/+) mice.

View Article and Find Full Text PDF

Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood.

View Article and Find Full Text PDF

Plasmodium falciparum malaria remains one of the most serious health problems globally and a protective malaria vaccine is desperately needed. Vaccination with attenuated parasites elicits multiple cellular effector mechanisms that lead to Plasmodium liver stage elimination. While granule-mediated cytotoxicity requires contact between CD8+ effector T cells and infected hepatocytes, cytokine secretion should allow parasite killing over longer distances.

View Article and Find Full Text PDF

Chloroquine (CQ) accumulation studies in live malaria parasites are typically conducted at low nanomolar CQ concentrations, and definition of CQ resistance (CQR) has been via growth inhibition assays versus low-dose CQ (i.e., via IC(50) ratios).

View Article and Find Full Text PDF

Several models for how amino acid substitutions in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to chloroquine (CQ) and other antimalarial drugs have been proposed. Distinguishing between these models requires detailed analysis of high-resolution CQ transport data that is unfortunately impossible to obtain with traditional radio-tracer methods. Thus, we have designed and synthesized fluorescent CQ analogues for drug transport studies.

View Article and Find Full Text PDF

Mutations in the PfCRT protein cause chloroquine resistance (CQR), and earlier studies from our laboratory using plasma membrane inside-out vesicles (ISOV) prepared from yeast expressing recombinant PfCRT [Zhang, H., et al. (2004) Biochemistry 43, 8290-8296] suggested that the putative transporter mediates downhill facilitated diffusion of charged chloroquine (CQ).

View Article and Find Full Text PDF