Publications by authors named "Mylene Weill"

Background: Mosquitoes of the Culex pipiens complex are widely distributed vectors for several arboviruses affecting humans. Consequently, their populations have long been controlled using insecticides, in response to which different resistance mechanisms have been selected. Moreover, their ecological preferences and broad adaptability allow C.

View Article and Find Full Text PDF

Mosquitoes of the Culex pipiens complex are worldwide vectors of arbovirus, filarial nematodes, and avian malaria agents. In these hosts, the endosymbiotic bacteria Wolbachia induce cytoplasmic incompatibility (CI), i.e.

View Article and Find Full Text PDF

Anopheles gambiae s.l. has been the target of intense insecticide treatment since the mid-20th century to try and control malaria.

View Article and Find Full Text PDF

This protocol describes approaches to qualify Wolbachia-induced cytoplasmic incompatibility (CI) patterns (compatible, uni or bidirectional) in crosses between two or more Culex pipiens isofemale lines, hosting different Wolbachia (wPip) strains. Here, we describe how to (1) collect the larvae in the field and grow them to the adult stage in the insectary, (2) set up isofemale lines in the insectary, (3) genetically characterize the wPip group of these lines, and (4) perform reciprocal crosses to qualify CI.

View Article and Find Full Text PDF

The importance of gene amplifications in evolution is more and more recognized. Yet, tools to study multi-copy gene families are still scarce, and many such families are overlooked using common sequencing methods. Haplotype reconstruction is even harder for polymorphic multi-copy gene families.

View Article and Find Full Text PDF

Wolbachia are common bacteria among terrestrial arthropods. These endosymbionts transmitted through the female germline manipulate their host reproduction through several mechanisms whose most prevalent form called Cytoplasmic Incompatibility -CI- is a conditional sterility syndrome eventually favoring the infected progeny. Upon fertilization, the sperm derived from an infected male is only compatible with an egg harboring a compatible Wolbachia strain, this sperm leading otherwise to embryonic death.

View Article and Find Full Text PDF

Organophosphate and carbamate insecticides have largely been used worldwide to control mosquito populations. As a response, the same amino acid substitution in the ace-1 gene (G119S), conferring resistance to both insecticides, has been selected independently in many mosquito species. In Anopheles gambiae, it has recently been shown that the G119S mutation is actually part of homogeneous duplications that associate multiple resistance copies of the ace-1 gene.

View Article and Find Full Text PDF

Background: Mosquitoes of the Culex pipiens complex are found across the globe and are the focus of many research studies. Among the temperate species C. pipiens sensu stricto (s.

View Article and Find Full Text PDF

The control of mosquito populations using insecticides is increasingly threatened by the spread of resistance mechanisms. Dieldrin resistance, conferred by point mutations in the Rdl gene encoding the γ-aminobutyric acid receptor, has been reported at high prevalence in mosquito populations in response to selective pressures. In this study, we monitored spatio-temporal dynamics of the resistance-conferring RdlR allele in Aedes (Stegomyia) albopictus (Skuse, 1895) and Culex (Culex) quinquefasciatus (Say, 1823) populations from Reunion Island.

View Article and Find Full Text PDF

Microbial communities are known to influence mosquito lifestyles by modifying essential metabolic and behavioral processes that affect reproduction, development, immunity, digestion, egg survival, and the ability to transmit pathogens. Many studies have used 16S rRNA gene amplicons to characterize mosquito microbiota and investigate factors that influence host-microbiota dynamics. However, a relatively low taxonomic resolution due to clustering methods based on arbitrary threshold and the overall dominance of or symbionts obscured the investigation of rare members of mosquito microbiota in previous studies.

View Article and Find Full Text PDF

Wolbachia endosymbionts commonly induce cytoplasmic incompatibility, making infected males' sperm lethal to the embryos unless these are rescued by the same bacterium, inherited from their mother. Causal genes were recently identified but two families of mechanistic models are still opposed. In the toxin-antidote model, interaction between the toxin and the antidote is required for rescuing the embryos.

View Article and Find Full Text PDF

In arthropods, endosymbionts induce conditional sterility, called cytoplasmic incompatibility (CI), resulting from embryonic lethality. CI penetrance (i.e.

View Article and Find Full Text PDF

Background: Mosquitoes of the Culex pipiens complex are the vectors of several arboviruses and are thus subjected to insecticide control worldwide. However, overuse of insecticides selects for resistance. While assessing the resistance status of the vectors is required for effective and sustainable disease control, resistance has so far only been sparsely studied in Morocco.

View Article and Find Full Text PDF

The inadequacy of standard mosquito control strategies calls for ecologically safe novel approaches, for example the use of biological agents such as the endosymbiotic α-proteobacteria Wolbachia or insect-specific viruses (ISVs). Understanding the ecological interactions between these "biocontrol endosymbionts" is thus a fundamental step. Wolbachia are transmitted vertically from mother to offspring and modify their hosts' phenotypes, including reproduction (e.

View Article and Find Full Text PDF

Background: Diflubenzuron (DFB) is one of the most used insecticides in mosquito larval control including that of Culex pipiens, the proven vector of the recent West Nile Virus epidemics in Europe. Two mutations (I1043L and I1043M) in the chitin synthase (CHS) putative binding site of DFB have been previously reported in Cx. pipiens from Italy and associated with high levels of resistance against this larvicide.

View Article and Find Full Text PDF

Background: Insecticide resistance is a growing concern for malaria control and vector control effectiveness relies on assessing it distribution and understanding its evolution.

Methods: We assessed resistance levels and the frequencies of two major target-site mutations, L1014F-VGSC and G119S-ace-1, conferring resistance to pyrethroids (PYRs) and carbamates/organophosphates (CXs/OPs) insecticides. These data were compared to those acquired between 2006 and 2010 to follow resistance evolutionary trends over ten years.

View Article and Find Full Text PDF

Although the diversity of bacterial endosymbionts in arthropods is well documented, whether and how such diversity is maintained remains an open question. We investigated the temporal changes occurring in the prevalence and composition of endosymbionts after transferring natural populations of Tetranychus spider mites from the field to the laboratory. These populations, belonging to three different Tetranychus species (T.

View Article and Find Full Text PDF

Viruses of the family infect a wide range of animals including vertebrates and invertebrates. So far, our understanding of parvovirus diversity is biased towards medically or economically important viruses mainly infecting vertebrate hosts, while invertebrate infecting parvoviruses-namely densoviruses-have been largely neglected. Here, we investigated the prevalence and the evolution of the only mosquito-infecting ambidensovirus, densovirus (CpDV), from laboratory mosquito lines and natural populations collected worldwide.

View Article and Find Full Text PDF

Endosymbiotic Wolbachia bacteria are, to date, considered the most widespread symbionts in arthropods and are the cornerstone of major biological control strategies. Such a high prevalence is based on the ability of Wolbachia to manipulate their hosts' reproduction. One manipulation called cytoplasmic incompatibility (CI) is based on the death of the embryos generated by crosses between infected males and uninfected females or between individuals infected with incompatible Wolbachia strains.

View Article and Find Full Text PDF

To protect humans and domestic animals from mosquito borne diseases, alternative methods to chemical insecticides have to be found. Pilot studies using the vertically transmitted bacterial endosymbiont Wolbachia were already launched in different parts of the world. Wolbachia can be used either in Incompatible Insect Technique (IIT), to decrease mosquito population, or to decrease the ability of mosquitoes to transmit pathogens.

View Article and Find Full Text PDF

Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV).

View Article and Find Full Text PDF

Wolbachia is a genus of obligate intracellular bacteria found in nematodes and arthropods worldwide, including insect vectors that transmit dengue, West Nile, and Zika viruses. Wolbachia's unique ability to alter host reproductive behavior through its temperate bacteriophage WO has enabled the development of new vector control strategies. However, our understanding of Wolbachia's mobilome beyond its bacteriophages is incomplete.

View Article and Find Full Text PDF

Wolbachia bacteria inhabit the cells of about half of all arthropod species, an unparalleled success stemming in large part from selfish invasive strategies. Cytoplasmic incompatibility (CI), whereby the symbiont makes itself essential to embryo viability, is the most common of these and constitutes a promising weapon against vector-borne diseases. After decades of theoretical and experimental struggle, major recent advances have been made toward a molecular understanding of this phenomenon.

View Article and Find Full Text PDF