Hazardous and odorous gas emissions from composting and methanization plants are an issue of public concern. Odor and chemical monitoring are thus critical steps in providing suitable strategies for air pollution control at waste treatment units. In this study, 141 gas samples were extensively analyzed to characterize the odor and chemical emissions released upon the aerobic treatment of 10 raw substrates and five digestates.
View Article and Find Full Text PDFThe stability of digestate organic matter is a key parameter for its use in agriculture. Here, the organic matter stability was compared between 14 post-treated digestates and the relationship between organic matter complexity and biodegradability was highlighted. Respirometric activity and CH yields in batch tests showed a positive linear correlation between both types of biodegradability (R=0.
View Article and Find Full Text PDFHome composting systems (HC) are known to facilitate municipal solid waste management, but little is known about their environmental impact including their greenhouse gas emissions (GGE). The present research focused on selecting HC configuration producing the least CH(4) and N(2)O. Thus, 4 HC types were used to compost food and yard waste for 150 days and monitored for CO(2), CH(4) and N(2)O as of day 15: the wood and plastic bins (WB and PB), the mixed and unmixed ground pile (GPM and GP).
View Article and Find Full Text PDFThe transformation and transfer of nitrogen during the aerobic treatment of seven wastes were studied in ventilated air-tight 10-L reactors at 35 °C. Studied wastes included distinct types of organic wastes and their digestates. Ammonia emissions varied depending on the kind of waste and treatment conditions.
View Article and Find Full Text PDF