Publications by authors named "Mykola V Borysenko"

Article Synopsis
  • The study explores how the temperature and behavior of concentrated alkali solutions (like NaOH in water) change due to factors like surface structure and hydrophilicity of materials, specifically nanosilicas.
  • Experiments were conducted using hydrogen NMR spectroscopy on NaOH and water mixtures on both hydrophilic and hydrophobic nanosilicas to observe the effects under different conditions.
  • Results indicated that water and NaOH form distinct clusters influenced by the surface properties of the nanosilicas and the dispersion media, affecting their interfacial properties and hydrogen bond networks.
View Article and Find Full Text PDF

Hypothesis: Various nanosilica characteristics depend on hydrophobization strongly affecting interfacial phenomena. Is it possible to prepare hydrophilic samples with hydrophobic silica (AM1) alone and in blends with hydrophilic one (A-300)? It can be done with addition of a small amount of water to the powders which then are mechanically treated.

Experiments: Nanosilicas were characterized using adsorption, desorption, microscopic, spectroscopic, and quantum chemistry methods.

View Article and Find Full Text PDF

It is well-known that interaction of hydrophobic powders with water is weak, and upon mixing, they typically form separated phases. Preparation of hydrophobic nanosilica AM1 with a relatively large content of bound water with no formation of separated phases was the aim of this study. Unmodified nanosilica A-300 and initial AM1 (A-300 completely hydrophobized by dimethyldichlorosilane), compacted A-300 (cA-300), and compacted AM1 (cAM1) containing 50-58 wt % of bound water were studied using low-temperature H NMR spectroscopy, thermogravimetry, infrared spectroscopy, microscopy, small-angle X-ray scattering, nitrogen adsorption, and theoretical modeling.

View Article and Find Full Text PDF

SiO@PDMS and CeO-ZrO-SiO@PDMS nanocomposites were prepared and studied using nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), measurements of advancing and receding contact angles with water, and microcalorimetry. The pore size distributions indicate that the textural characteristics change after oxide modification by poly(dimethylsiloxane) (PDMS). Composites are characterized by mainly mesoporosity and macroporosity of aggregates of oxide nanoparticles or oxide@PDMS nanoparticles and their agglomerates.

View Article and Find Full Text PDF

Preparation of poly(2-hydroxyethyl methacrylate) (PHEMA) based nanocomposites using different approaches such as synthesis with water as the porogen, filling of polymer matrix by silica and formation of interpenetrating polymer networks with polyurethane was demonstrated. Incorporation of various biologically active compounds (BAC) such as metronidazole, decamethoxin, zinc sulphate, silver nitrate or amino acids glycine and tryptophan into nanocomposites was achieved. BAC were introduced into the polymer matrix either (1) directly, or (2) with a solution of colloidal silica, or (3) through immobilization on silica (sol-densil).

View Article and Find Full Text PDF

Silica-Enoxil nanobiocomposites with 13 %w of Enoxil were prepared either by mechanical mixing of corresponding powders or by sorptive modification of fumed silica powder with aqueous Enoxil solution under fluidized bed conditions. The interaction of fumed silica with Enoxil and the properties of silica-Enoxil composites have been investigated using IR spectroscopy, thermogravimetric analysis, and quantum chemistry methods, as well as by means of water absorption, Enoxil desorption, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) test. It has been shown that the main biomolecules of Enoxil composition interact with silica involving their hydroxyl groups and surface silanol groups.

View Article and Find Full Text PDF