Publications by authors named "Mykola Maidan"

Introduction: Breast cancer is genetically and clinically a heterogeneous disease. However, the exact contribution of different cell types and oncogenic mutations to this heterogeneity are not well understood. Recently, we discovered an interaction between Wnt and integrin-linked kinase (ILK) within the signaling cascade that regulates cell growth and survival.

View Article and Find Full Text PDF

An unbiased proteomic screen to identify integrin-linked kinase (ILK) interactors revealed rictor as an ILK-binding protein. This finding was interesting because rictor, originally identified as a regulator of cytoskeletal dynamics, is also a component of mammalian target of rapamycin complex 2 (mTORC2), a complex implicated in Akt phosphorylation. These functions overlap with known ILK functions.

View Article and Find Full Text PDF

We identified in the methylotrophic yeast Hansenula polymorpha (syn. Pichia angusta) a novel hexose transporter homologue gene, HXS1 (hexose sensor), involved in transcriptional regulation in response to hexoses, and a regular hexose carrier gene, HXT1 (hexose transporter). The Hxs1 protein exhibits the highest degree of primary sequence similarity to the Saccharomyces cerevisiae transporter-like glucose sensors, Snf3 and Rgt2.

View Article and Find Full Text PDF

Inhibition of the biosynthesis of trehalose, a well-known stress protectant in pathogens, is an interesting approach for antifungal or antibacterial therapy. Deletion of TPS2, encoding trehalose-6-phosphate (T6P) phosphatase, results in strongly reduced virulence of Candida albicans due to accumulation of T6P instead of trehalose in response to stress. To further aggravate the deregulation in the pathogen, we have additionally deleted the GPR1 gene, encoding the nutrient receptor that activates the cyclic AMP-protein kinase A signaling pathway, which negatively regulates trehalose accumulation in yeasts.

View Article and Find Full Text PDF

We investigated the role in cell morphogenesis and pathogenicity of the Candida albicans GPR1 gene, encoding the G protein-coupled receptor Gpr1. Deletion of C. albicans GPR1 has only minor effects in liquid hypha-inducing media but results in strong defects in the yeast-to-hypha transition on solid hypha-inducing media.

View Article and Find Full Text PDF

An extended definition of the term metabolic engineering is given and its successful use in the construction of biorecognition elements of sensors is demonstrated. It is shown that genetic and chemical modifications of methylotrophic yeast cells provide directed changes in their physiological responses towards methanol, ethanol and formaldehyde resulting in enhanced selectivity and shorter time response of the corresponding potentiometric and amperometric biosensors.

View Article and Find Full Text PDF