The enterobacterial common antigen (ECA) is conserved in Gram-negative bacteria of the order although its function is debated. ECA biogenesis depends on the Wzx/Wzy-dependent strategy whereby the newly synthesized lipid-linked repeat units, lipid III, are transferred across the inner membrane by the lipid III flippase WzxE. WzxE is part of the Wzx family and required in many glycan assembly systems, but an understanding of its molecular mechanism is hindered due to a lack of structural evidence.
View Article and Find Full Text PDFVolatile general anesthetics are used for inhalational anesthesia in hundreds of millions of surgical procedures annually, yet their mechanisms of action remain unclear. Membrane proteins involved in cell signaling are major targets for anesthetics, and voltage-gated ion channels that mediate neurotransmission, movement, and cognition are sensitive to volatile anesthetics (VAs). In many cases, the effects produced by VAs on mammalian ion channels are reproduced in prokaryotic orthologues, providing an opportunity to investigate VA interactions at high resolution using these structurally simpler prokaryotic proteins.
View Article and Find Full Text PDFMetal ions have important roles in supporting the catalytic activity of DNA-regulating enzymes such as topoisomerases (topos). Bacterial type II topos, gyrases and topo IV, are primary drug targets for fluoroquinolones, a class of clinically relevant antibacterials requiring metal ions for efficient drug binding. While the presence of metal ions in topos has been elucidated in biochemical studies, accurate location and assignment of metal ions in structural studies have historically posed significant challenges.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
October 2024
AlphaFold2 has revolutionized structural biology by offering unparalleled accuracy in predicting protein structures. Traditional methods for determining protein structures, such as X-ray crystallography and cryo-electron microscopy, are often time-consuming and resource-intensive. AlphaFold2 provides models that are valuable for molecular replacement, aiding in model building and docking into electron density or potential maps.
View Article and Find Full Text PDFFragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties.
View Article and Find Full Text PDFDespite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength.
View Article and Find Full Text PDFThe identification of multiple simultaneous orientations of small molecule inhibitors binding to a protein target is a common challenge. It has recently been reported that the conformational heterogeneity of ligands is widely underreported in the Protein Data Bank, which is likely to impede optimal exploitation to improve affinity of these ligands. Significantly less is even known about multiple binding orientations for fragments (<300 Da), although this information would be essential for subsequent fragment optimisation using growing, linking or merging and rational structure-based design.
View Article and Find Full Text PDFDespite being fundamental to multiple biological processes, phosphorus (P) availability in marine environments is often growth-limiting, with generally low surface concentrations. Picocyanobacteria strains encode a putative ABC-type phosphite/phosphate/phosphonate transporter, phnDCE, thought to provide access to an alternative phosphorus pool. This, however, is paradoxical given most picocyanobacterial strains lack known phosphite degradation or carbon-phosphate lyase pathway to utilise alternate phosphorus pools.
View Article and Find Full Text PDFIn this study, we carried out a detailed investigation of the photoluminescence of Mn in GaO-AlO solid solutions as a function of the chemical composition, temperature, and hydrostatic pressure. For this purpose, a series of (AlGa)O:Mn,Mg phosphors ( = 0, ..
View Article and Find Full Text PDFThe introduction of phosphorothioate (PS) linkages to the backbone of therapeutic nucleic acids substantially increases their stability and potency. It also affects their interactions with cellular proteins, but the molecular mechanisms that underlie this effect are poorly understood. Here, we report structural and biochemical studies of interactions between annexin A2, a protein that does not possess any known canonical DNA binding domains, and phosphorothioate-modified antisense oligonucleotides.
View Article and Find Full Text PDFCrystals of metal hexachlorides CsMCl (M = Hf or Zr) have recently emerged as promising materials for scintillation applications due to their excellent energy resolution. In this work, we investigated the crystal structure and scintillation properties of CsHfCl and CsZrCl crystals in the broad temperature range from 9 to 300 K. X-ray diffraction data confirmed the same cubic structure (space group ) for CsHfCl and CsZrCl over the entire examined temperature range.
View Article and Find Full Text PDFLuminescence probes that facilitate multimodal non-contact measurements of temperature are of particular interest due to the possibility of cross-referencing results across different readout techniques. This intrinsic referencing is an essential addition that enhances accuracy and reliability of the technique. A further enhancement of sensor performance can be achieved by using two luminescent ions acting as independent emitters, thereby adding in-built redundancy to non-contact temperature sensing, using a single readout technique.
View Article and Find Full Text PDFLong-wavelength macromolecular crystallography (MX) exploits the anomalous scattering properties of elements, such as sulfur, phosphorus, potassium, chlorine, or calcium, that are often natively present in macromolecules. This enables the direct structure solution of proteins and nucleic acids via experimental phasing without the need of additional labelling. To eliminate the significant air absorption of X-rays in this wavelength regime, these experiments are performed in a vacuum environment.
View Article and Find Full Text PDFIn this paper a practical solution for the reconstruction and segmentation of low-contrast X-ray tomographic data of protein crystals from the long-wavelength macromolecular crystallography beamline I23 at Diamond Light Source is provided. The resulting segmented data will provide the path lengths through both diffracting and non-diffracting materials as basis for analytical absorption corrections for X-ray diffraction data taken in the same sample environment ahead of the tomography experiment. X-ray tomography data from protein crystals can be difficult to analyse due to very low or absent contrast between the different materials: the crystal, the sample holder and the surrounding mother liquor.
View Article and Find Full Text PDFThe structure determination of soluble and membrane proteins can be hindered by the crystallographic phase problem, especially in the absence of a suitable homologous structure. Experimental phasing is the method of choice for novel structures; however, it often requires heavy-atom derivatization, which can be difficult and time-consuming. Here, a novel and rapid method to obtain experimental phases for protein structure determination by vanadium phasing is reported.
View Article and Find Full Text PDFThe results of X-ray diffraction studies of the Gd(Mg,ZnMn)BO down-converting phosphor as a function of Mg-Zn composition are presented. The lattice parameters and unit cell volumes of GdMgZnMnBO pentaborates are examined. The relationships between the structure and optical properties of these materials are explicated based on the results of theoretical calculations of the energy structure.
View Article and Find Full Text PDFSensors (Basel)
September 2020
Luminescence methods for non-contact temperature monitoring have evolved through improvements of hardware and sensor materials. Future advances in this field rely on the development of multimodal sensing capabilities of temperature probes and extend the temperature range across which they operate. The family of Cr-doped oxides appears particularly promising and we review their luminescence characteristics in light of their application in non-contact measurements of temperature over the 5-300 K range.
View Article and Find Full Text PDFHighly efficient scintillation crystals with short decay times are indispensable for improving the performance of numerous detection and imaging instruments that use- X-rays, gamma-quanta, ionising particles or neutrons. Halide perovskites emerged recently as very promising materials for detection of ionising radiation that motivated further exploration of the materials. In this work, we report on excellent scintillation properties of CsPbBr crystals when cooled to cryogenic temperatures.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
December 2019
Although often presented as taking single `snapshots' of the conformation of a protein, X-ray crystallography provides an averaged structure over time and space within the crystal. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes residual electron and anomalous density (READ) to characterize structural ensembles encompassing large-scale structural changes.
View Article and Find Full Text PDFThe ribosome, the largest RNA-containing macromolecular machinery in cells, requires metal ions not only to maintain its three-dimensional fold but also to perform protein synthesis. Despite the vast biochemical data regarding the importance of metal ions for efficient protein synthesis and the increasing number of ribosome structures solved by X-ray crystallography or cryo-electron microscopy, the assignment of metal ions within the ribosome remains elusive due to methodological limitations. Here we present extensive experimental data on the potassium composition and environment in two structures of functional ribosome complexes obtained by measurement of the potassium anomalous signal at the K-edge, derived from long-wavelength X-ray diffraction data.
View Article and Find Full Text PDFRealtime in situ temperature monitoring in difficult experimental conditions or inaccessible environments is critical for many applications. Non-contact luminescence decay time thermometry is often the method of choice for such applications due to a favorable combination of sensitivity, accuracy and robustness. In this work, we demonstrate the feasibility of an ultrafast PbI scintillator for temperature determination, using the time structure of X-ray radiation, produced by a synchrotron.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2018
Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res B
November 2017
Phasing of novel macromolecular crystal structures has been challenging since the start of structural biology. Making use of anomalous diffraction of natively present elements, such as sulfur and phosphorus, for phasing has been possible for some systems, but hindered by the necessity to access longer X-ray wavelengths in order to make most use of the anomalous scattering contributions of these elements. Presented here are the results from a first successful experimental phasing study of a macromolecular crystal structure at a wavelength close to the sulfur K edge.
View Article and Find Full Text PDFJ Synchrotron Radiat
May 2017
Temperature is a very important parameter when aiming to minimize radiation damage to biological samples during experiments that utilize intense ionizing radiation. A novel technique for remote, non-contact, in situ monitoring of the protein crystal temperature has been developed for the new I23 beamline at the Diamond Light Source, a facility dedicated to macromolecular crystallography (MX) with long-wavelength X-rays. The temperature is derived from the temperature-dependent decay time constant of luminescence from a minuscule scintillation sensor (<0.
View Article and Find Full Text PDF