Broad-band pump-probe spectroscopy combined with global and target analysis is employed to study the vibronic and excitonic dynamics of two dimers and a tetramer of perylenediimides. A simultaneous analysis is developed for two systems that have been measured in the same conditions. This enhances the resolvability of the vibronic and excitonic dynamics of the systems, and the solvent contributions that are common in the experiments.
View Article and Find Full Text PDFWe report the synthesis and solution based photophysical properties of a new Pt(ii)-terpyridine complex coupled to a perylene monoimide (PMI) chromophoric unit through an acetylene linkage. This structural arrangement resulted in quantitative quenching of the highly fluorescent PMI chromophore by introducing metal character into the lowest energy singlet state, thereby leading to the formation of a long-lived PMI-ligand localized triplet excited state (τ = 8.4 μs).
View Article and Find Full Text PDFThe intramolecular charge-transfer (CT) dynamics of a rigid and strongly conjugated perylenediimide-bridge-perylene dyad (PDIPe) has been investigated in dichloromethane using ultrafast transient electronic absorption spectroscopy and quantum chemical calculations. The strong electronic coupling between the dyad units gives rise to a CT band. Its photoexcitation forms a delocalized CT state with well-preserved ion bands despite the strong coupling.
View Article and Find Full Text PDFWe have synthesized and thoroughly characterized two representative ladder-type acetylene-bridged perylenediimide dimers bearing long alkyl chain solubilizing groups, bis[1-ethynyl-N,N'-bis(1-hexylheptyl)-perylene-3,4:9,10-tetracarboxylic diimide] ([PDICC]2, 1) and 1,1'-ethynyl-bis[N,N'-bis(1-hexylheptyl)-perylene-3,4:9,10-tetracarboxylic diimide] ([PDI]2CC, 2). In these dimeric PDI molecules, NMR-based structural characterization became nontrivial because severe (1)H spectral broadening and greater than expected numbers of observed (13)C resonances substantially complicated the interpretation of traditional 1-D spectra. However, rational two-dimensional NMR approaches based on both homo- and heteronuclear couplings ((1)H-(1)H COSY; (1)H-(13)C HSQC), in conjunction with high-level structural DFT calculations (GIAO/B3LYP/6-31G(d,p)/PCM, chloroform), were readily applied to these structures, producing well-defined analytical characterization, and the associated methodology is described in detail.
View Article and Find Full Text PDFThe phosphorescent metalloporphyrin sensitizer PtTPTNP (TPTNP = tetraphenyltetranaphtho[2,3]porphyrin) has been successfully coupled with perylenediimide (PDI) or rubrene utilized as triplet acceptors/annihilators to upconvert 690 nm incident photons into yellow fluorescence through sensitized triplet-triplet annihilation at overall efficiencies in the 6-7% range while exhibiting exceptional photostability.
View Article and Find Full Text PDFThe 9-anthryltriphenylstibonium cation, [1](+), has been synthesized and used as a sensor for the toxic fluoride anion in water. This stibonium cation complexes fluoride ions to afford the corresponding fluorostiborane 1-F. This reaction, which occurs at fluoride concentrations in the parts per million range, is accompanied by a drastic fluorescence turn-on response.
View Article and Find Full Text PDFWe have developed and optimized a well-controlled and refined methodology for the synthesis of substituted π-conjugated 4,4'-styryl-2,2'-bipyridine ligands and also adapted the tris(heteroleptic) synthetic approach developed by Mann and co-workers to produce two new representative Ru(II)-based complexes bearing the metal oxide surface-anchoring precursor 4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine. The two targeted Ru(II) complexes, (4,4'-dimethyl-2,2'-bipyridine)(4,4'-di-tert-butyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dtbbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (1) and (4,4'-dimethyl-2,2'-bipyridine)(4,4'-dinonyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dnbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (2) were obtained as analytically pure compounds in high overall yields (>50% after 5 steps) and were isolated without significant purification effort. In these tris(heteroleptic) molecules, NMR-based structural characterization became nontrivial as the coordinated ligand sets each sense profoundly distinct magnetic environments greatly complicating traditional 1D spectra.
View Article and Find Full Text PDFA new synthetically facile heteroleptic ruthenium(II) sensitizer (NBu(4))[Ru(4,7-dpp)(dcbpyH)(NCS)(2)], coded as YS5, where NBu(4) is tetrabutylammonium, 4,7-dpp is 4,7-diphenyl-1,10-phenanthroline, and dcbpyH is the singly deprotonated surface anchoring derivative of 4,4'-dicarboxy-2,2'-bipyridine (dcbpyH(2)), was designed, synthesized, and incorporated into regenerative mesoscopic titania-based dye-sensitized solar cells. The sensitizer has characteristic broad, high extinction coefficient MLCT bands spanning the visible spectrum. The compound was fully characterized by 1D and 2D (1)H NMR, MALDI-TOF-MS, UV-vis, photoluminescence, Raman, IR, and electrochemistry.
View Article and Find Full Text PDFUltrafast photolysis (lambdaex = 270, 350, or 360 nm) of bromophenyl, chlorophenyl, fluorophenyl, and fluoro-para-trifluoromethylphenyl diazirines produces transient species which absorb broadly in the UV and visible regions. Transient decay can be fit to either mono- or biexponential functions (tau1 approximately 0.3-10 ps, tau2 approximately 10-350 ps; dependent on solvent and halogen).
View Article and Find Full Text PDF[reaction: see text] Photolysis of 3-(2,2,2-triphenylethoxy)-3-chlorodiazirine gives 2,2,2-triphenylethoxychlorocarbene which fragments with 1,2-phenyl migration and loss of CO and Cl(-) to yield the 1,1,2-triphenylethyl cation and thence 1,1,2-triphenylethene by proton loss. However, ps and fs laser flash photolysis provides evidence that up to 25% of the alkene product stems from carbocation that arises directly from excited diazirine rather than from the carbene.
View Article and Find Full Text PDF