Publications by authors named "Myeongbin Kim"

Although the primary pandemic of SARS-CoV-2 is over, there are concerns about the resurgence of the next wave of related viruses, including a wide range of variant viruses. The soluble ACE2 (sACE2) inhibits the SARS-CoV-2 spike protein ACE2 interaction and has potential as a variant-independent therapeutic against SARS-CoV-2. Here, we introduce novel disulfide bonds in the wild-type sACE2-Fc by structure-guided mutagenesis, aiming to improve its stability.

View Article and Find Full Text PDF

Being a component of the Ras/Raf/MEK/ERK signaling pathway crucial for cellular responses, the VRAF murine sarcoma viral oncogene homologue B1 (BRAF) kinase has emerged as a promising target for anticancer drug discovery due to oncogenic mutations that lead to pathway hyperactivation. Despite the discovery of several small-molecule BRAF kinase inhibitors targeting oncogenic mutants, their clinical utility has been limited by challenges such as off-target effects and suboptimal pharmacological properties. This study focuses on identifying miniprotein inhibitors for the oncogenic V600E mutant BRAF, leveraging their potential as versatile drug candidates.

View Article and Find Full Text PDF

The microbial transcription factor YhaJ responds to 2,4-dinitrotoluene (DNT) derivatives. Here, we describe steps for overexpression and purification of the protein, characterization for the binding of a DNT derivative methylhydroquinone, and crystallization by using a random seeding technique. We then detail procedures for structure determination by employing the crystal-twin resolving processes.

View Article and Find Full Text PDF

Detection of landmines without harming personnel is a global issue. The bacterial transcription factor YhaJ selectively detects metabolites of explosives, and it can be used as a key component of DNT biosensors. However, the wild-type YhaJ has a binding affinity that is not sufficient for the detection of trace amounts of explosives leaked from landmines buried in the soil.

View Article and Find Full Text PDF

Receptor-type protein tyrosine phosphatases (RPTPs) receive extracellular stimuli and transfer them into cells. They regulate cell growth, differentiation and death via specific signals. They have also been implicated in cancer, diabetes and neurological diseases.

View Article and Find Full Text PDF

Mitochondrial respiratory supercomplexes mediate redox electron transfer, generating a proton gradient for ATP synthesis. To provide structural information on the function of supercomplexes in physiologically relevant conditions, we conducted cryoelectron microscopy studies with supercomplexes in a lipid-preserving state. Here, we present cryoelectron microscopy structures of bovine respiratory supercomplex IIIIIV by using a lipid-preserving sample preparation.

View Article and Find Full Text PDF

Structure based virtual screening attempts to discover DUSP1 inhibitors have yielded a scaffold featuring benzoxazole and acylthiourea pharmacophore. A series of its analogues were synthesized to explore structure activity relationship (SAR) of DUSP1 inhibition.

View Article and Find Full Text PDF

Dual-specificity phosphatases (DUSPs) constitute a subfamily of protein tyrosine phosphatases, and are intimately involved in the regulation of diverse parameters of cellular signaling and essential biological processes. DUSP28 is one of the DUSP subfamily members that is known to be implicated in the progression of hepatocellular and pancreatic cancers, and its biological functions and enzymatic characteristics are mostly unknown. Herein, we present the crystal structure of human DUSP28 determined to 2.

View Article and Find Full Text PDF

Dual specificity phosphatases (DUSPs) include MAP kinase phosphatases and atypical dual specificity phosphatases and mediate cell growth and differentiation, brain function, and immune responses. They serve as targets for drug development against cancers, diabetes and depression. Several DUSPs have non-canonical conformation of the central β-sheet and active site loops, suggesting that they may have conformational switch that is related to the regulation of enzyme activity.

View Article and Find Full Text PDF