Publications by authors named "Myeong-Jun Choi"

Bioactive lipids like sphingosine-1-phosphate (S1P) and lysophosphatidic acid have gained significant attention as signaling molecules with regulatory roles in stem cell proliferation and differentiation. The novel chemically synthesized sphingosine metabolite O-cyclic phytosphingosine-1-phosphate (cP1P) is derived from phytosphingosine-1-phosphate (P1P) and shares structural similarities with S1P. Previously, the role of cP1P in regulating ALK3/BMPR signaling during cardiomyocyte differentiation from human embryonic stem cells (hESCs) was demonstrated.

View Article and Find Full Text PDF

In this study, we describe a novel kinase inhibitor AX-0085 which can suppress the induction of PD-L1 expression by Interferon-γ (IFN-γ) in lung adenocarcinoma (LUAD) cells. AX-0085 effectively blocks JAK2/STAT1 signaling initiated by IFN-γ treatment and prevents nuclear localization of STAT1. Importantly, we demonstrate that AX-0085 reverses the IFN-γ-mediated repression of T cell activation in vitro and enhances the anti-tumor activity of anti-PD-1 antibody in vivo when used in combination.

View Article and Find Full Text PDF

Adult human cardiomyocytes have an extremely limited proliferative capacity, which poses a great barrier to regenerative medicine and research. Human embryonic stem cells (hESCs) have been proposed as an alternative source to generate large numbers of clinical grade cardiomyocytes (CMs) that can have potential therapeutic applications to treat cardiac diseases. Previous studies have shown that bioactive lipids are involved in diverse cellular responses including cardiogenesis.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most predominant age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregates of amyloid beta Aβ and tau hyperphosphorylation in the brain. It is considered to be the primary cause of cognitive dysfunction. The aggregation of Aβ leads to neuronal inflammation and apoptosis.

View Article and Find Full Text PDF

Previously, the majority of human embryonic stem cells and human induced pluripotent stem cells have been derived on feeder layers and chemically undefined medium. Those media components related to feeder cells, or animal products, often greatly affect the consistency of the cell culture. There are clear advantages of a defined, xeno-free, and feeder-free culture system for human pluripotent stem cells (hPSCs) cultures, since consistency in the formulations prevents lot-to-lot variability.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease and chronic illness with long preclinical phases and a long clinical duration. Until recently, a lack of potential therapeutic agents against AD was the primary focus of research, which resulted in less effort directed towards developing useful diagnostic approaches. In this study, we developed a WO2002/088706 kit that is composed of fluorescent nanoparticles for the early detection of AD.

View Article and Find Full Text PDF

Phytosphingosine-1-phosphate (P1P) is a signaling sphingolipid that regulates various physiological activities. However, little is known about the effect of P1P in the context of reproduction. Thus, we aimed to investigate the influence of P1P on oocyte maturation during porcine in vitro maturation (IVM).

View Article and Find Full Text PDF

O-cyclic phytosphingosine-1-phosphate (cP1P) is a novel chemically synthesized sphingosine metabolite derived from phytosphingosine-1-phosphate. Although structurally similar to sphingosine-1-phosphate (S1P), its biological properties in stem cells remain to be reported. We investigated the effect of cP1P on the therapeutic potential of mesenchymal stem cells (MSCs) and their regulatory mechanism.

View Article and Find Full Text PDF

Phytosphingosine and methyl derivatives are important mediators on cellular processes, and are associated with cell growth and death. The antitumor activity of N,N,N-trimethylphytosphingosine-iodide (TMP) as a novel potent inhibitor of angiogenesis and metastasis was evaluated in B16F10 murine melanoma cells. The results indicated that TMP itself effectively inhibited in vitro cell migration, tube formation, and the expression of angiogenic factors as well as in vivo lung metastasis.

View Article and Find Full Text PDF

Background: The screening of peptide-based epitopes has been studied extensively for the purpose of developing therapeutic antibodies and prophylactic vaccines that can be potentially useful for treating cancer and infectious diseases such as influenza virus, malaria, hepatitis B, and HIV. To improve the efficacy of antibody production by epitope-based immunization, researchers evaluated liposomes as a means of delivering vaccines; they also formulated adjuvants such as flagella and CpG-DNA to enhance the magnitude of immune responses. Here, we provide a potent method for peptide-based epitope screening and antibody production without conventional carriers.

View Article and Find Full Text PDF

Topical DNA vaccines have been shown to elicit both broad humoral and cellular immune response in vivo. The skin is an attractive site for the delivery DNA antigens for DNA vaccination. However, due to skin's barrier properties, the penetration of DNA and the applications of topical vaccination are limited.

View Article and Find Full Text PDF

Stratum corneum intercellular lipids play an important role in the regulation of skin water barrier homeostasis and water-holding capacity. Modification of intercellular lipid organization and composition may impair these properties. Patients with skin diseases such as atopic dermatitis, psoriasis, contact dermatitis, and some genetic disorders have diminished skin barrier function.

View Article and Find Full Text PDF

Previously, by using combinatorial peptide libraries, we have identified activity-optimized decapeptide (KSL, KKVVFKVKFK-NH(2)), which exhibited a broad spectrum of the activity against bacteria and fungi without hemolytic activity. In order to examine lipid requirements and to understand the mode of KSL action, we investigated interactions of the peptide with vesicles consisting of various lipid compositions. KSL increased the permeability of negatively charged but not zwitterionic phospholipid membranes, and the leakage was independent on the size of encapsulated molecules (calcein, 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS)/N,N'-p-xylene bis(pyridinium) bromide (DPX), and fluorescein isothiocyanate (FITC)-dextran with different molecular weight), indicating that the peptide did not form pores or channels in this leakage process.

View Article and Find Full Text PDF

Background/aims: Various methodologies have been developed to quantify antioxidant activity. A simple, rapid and accurate method is demanded. This study examined the antioxidative status of a pH balanced vitamin E containing formulation versus its vehicle control utilizing a photochemiluminescence device.

View Article and Find Full Text PDF