The aim of the proposed work was to analyze the toxicity of oxidized carbon nanotubes (CNTox), functionalized by doxorubicin (CNT-Dox) and fluorescein (CNT-FITC) on cell and organism level. The cytotoxic effect of CNTox, CNT-Dox, and CNT-FITC was analyzed on tumor cells in vitro (2-D, 3-D cultures) and on Balb2/c mice model in vivo. As a result, it was demonstrated the possibility of doxorubicin immobilization on the surface of CNT and controlled release of doxorubicin (Dox) from the surface of CNT.
View Article and Find Full Text PDFThe actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors.
View Article and Find Full Text PDFAbstract: This paper describes the impact of different concentrations of single-walled carbon nanotubes (SWCNTs) on cell viability of breast adenocarcinoma, MCF-7 line, and formation of multicellular tumor spheroids (MTS). Chemical composition and purity of nanotubes is controlled by Fourier transform infrared spectroscopy. The strength and direction of the influence of SWCNTs on the tumor cell population was assessed by cell counting and measurement of the volume of multicellular tumor spheroids.
View Article and Find Full Text PDF