ABCB6 has been implicated in dyschromatosis universalis hereditaria, a condition characterized by hyperpigmented and hypopigmented skin macules. Dyschromatosis universalis hereditaria can also present with hearing loss. Dyschromatosis universalis hereditaria-associated mutations in ABCB6 have been reported, but the role of this protein in the inner ear has not been studied.
View Article and Find Full Text PDFThe antimicrobial resistance crisis along with challenges of antimicrobial discovery revealed the vital necessity to develop new antibiotics. Many of the animal proline-rich antimicrobial peptides (PrAMPs) inhibit the process of bacterial translation. Genome projects allowed to identify immune-related genes encoding animal host defense peptides.
View Article and Find Full Text PDFCryo-transmission electron microscopy (cryo-EM) of frozen hydrated specimens is an efficient method for the structural analysis of purified biological molecules. However, cryo-EM and cryo-electron tomography are limited by the low signal-to-noise ratio (SNR) of recorded images, making detection of smaller particles challenging. For dose-resilient samples often studied in the physical sciences, electron ptychography - a coherent diffractive imaging technique using 4D scanning transmission electron microscopy (4D-STEM) - has recently demonstrated excellent SNR and resolution down to tens of picometers for thin specimens imaged at room temperature.
View Article and Find Full Text PDFAssociation was assessed between the data harvested by a long-baseline laser interference deformograph and the dynamics of body temperature (BT) in hamsters deprived of natural daily light-darkness changes. The power spectral data revealed the positive correlation between simultaneous time series of hamster BT and the Earth's crust deformation (ECD). The superposed epoch analysis established an association between abrupt upstrokes of hamster BT and ECD increments.
View Article and Find Full Text PDFHere, we present the high-resolution structure of the Gallus gallus 80S ribosome obtained from cold-treated chicken embryos. The translationally inactive ribosome complex contains elongation factor eEF2 with GDP, SERPINE1 mRNA binding protein 1 (SERBP1) and deacylated tRNA in the P/E position, showing common features with complexes already described in mammals. Modeling of most expansion segments of G.
View Article and Find Full Text PDFOne of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2). At present, only a few snapshots of eukaryotic ribosome translocation have been reported.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2023
The ribosome is a major target for clinically used antibiotics, but multidrug resistant pathogenic bacteria are making our current arsenal of antimicrobials obsolete. Here we present cryo-electron-microscopy structures of 17 distinct compounds from six different antibiotic classes bound to the bacterial ribosome at resolutions ranging from 1.6 to 2.
View Article and Find Full Text PDFIn all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems. Although key features are conserved across evolution, eukaryotes achieve higher-fidelity mRNA decoding than bacteria.
View Article and Find Full Text PDFInvestigation of potential hosts of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is crucial to understanding future risks of spillover and spillback. SARS-CoV-2 has been reported to be transmitted from humans to various animals after requiring relatively few mutations. There is significant interest in describing how the virus interacts with mice as they are well adapted to human environments, are used widely as infection models and can be infected.
View Article and Find Full Text PDFStructural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction.
View Article and Find Full Text PDFA six-subunit ATPase ring forms the central hub of the replication forks in all domains of life. This ring performs a helicase function to separate the two complementary DNA strands to be replicated and drives the replication machinery along the DNA. Disruption of this helicase/ATPase ring is associated with genetic instability and diseases such as cancer.
View Article and Find Full Text PDFHepatitis B virus core antigen (HBc) with the insertion of four external domains of the influenza A M2 protein (HBc/4M2e) form virus-like particles whose structure was studied using a combination of molecular modeling and cryo-electron microscopy (cryo-EM). It was also shown that self-assembling of the particles occurs inside bacterial cells, but despite the big inner volume of the core shell particle, purified HBc/4M2e contain an insignificant amount of bacterial proteins. It was shown that a fragment of the M2e corresponding to 4M2e insertion is prone to formation of amyloid-like fibrils.
View Article and Find Full Text PDFThe CRISPR-guided caspase (Craspase) complex is an assembly of the target-specific RNA nuclease known as Cas7-11 bound to CRISPR RNA (crRNA) and an ancillary protein known as TPR-CHAT (tetratricopeptide repeats (TPR) fused with a CHAT domain). The Craspase complex holds promise as a tool for gene therapy and biomedical research, but its regulation is poorly understood. TPR-CHAT regulates Cas7-11 nuclease activity via an unknown mechanism.
View Article and Find Full Text PDFAn in situ synchrotron experimental study of phase formation dynamics in clad mechanocomposites of Ti-Al systems during high-temperature synthesis was performed. Cladding of the obtained mechanocomposites was carried out with an SiO target, with a deposition time of 40 min. The high-temperature synthesis was performed using the thermal explosion method based on a microwave induction heater in the in situ mode on an experimental setup adapted to synchrotron radiation time-resolved diffractometry.
View Article and Find Full Text PDFAlteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (mA2503). Acquisition of results in resistance to eight classes of ribosome-targeting antibiotics.
View Article and Find Full Text PDFMaintaining a healthy proteome is fundamental for the survival of all organisms. Integral to this are Hsp90 and Hsp70, molecular chaperones that together facilitate the folding, remodelling and maturation of the many 'client proteins' of Hsp90. The glucocorticoid receptor (GR) is a model client protein that is strictly dependent on Hsp90 and Hsp70 for activity.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that regulates important functions in the central nervous system. The ALK gene is a hotspot for chromosomal translocation events that result in several fusion proteins that cause a variety of human malignancies. Somatic and germline gain-of-function mutations in ALK were identified in paediatric neuroblastoma.
View Article and Find Full Text PDFPeptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2-20 per second) and with a low error rate (around 10 to 10 at each step) over thousands of cycles. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome.
View Article and Find Full Text PDFRibosome biogenesis is a highly coordinated and complex process that requires numerous assembly factors that ensure prompt and flawless maturation of ribosomal subunits. Despite the increasing amount of data collected, the exact role of most assembly factors and mechanistic details of their operation remain unclear, mainly due to the shortage of high-resolution structural information. Here, using cryo-electron microscopy, we characterized 30S ribosomal particles isolated from an strain with a deleted gene for the RbfA factor.
View Article and Find Full Text PDFMutations in leucine-rich repeat kinase 2 (LRRK2) are commonly implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 regulates critical cellular processes at membranous organelles and forms microtubule-based pathogenic filaments, yet the molecular basis underlying these biological roles of LRRK2 remains largely enigmatic. Here, we determined high-resolution structures of full-length human LRRK2, revealing its architecture and key interdomain scaffolding elements for rationalizing disease-causing mutations.
View Article and Find Full Text PDFAnemia is a frequent manifestation of myelofibrosis (MF) and there is an unmet need for effective treatments in anemic MF patients. The REALISE phase 2 study (NCT02966353) evaluated the efficacy and safety of a novel ruxolitinib dosing strategy with a reduced starting dose with delayed up-titration in anemic MF patients. Fifty-one patients with primary MF (66.
View Article and Find Full Text PDFPlant-derived extracellular vesicles (EVs) gain more and more attention as promising carriers of exogenous bioactive molecules to the human cells. Derived from various edible sources, these EVs are remarkably biocompatible, biodegradable and highly abundant from plants. In this work, EVs from grapefruit juice were isolated by differential centrifugation followed by characterization of their size, quantity and morphology by nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy and cryo-electron microscopy (Cryo-EM).
View Article and Find Full Text PDF