Publications by authors named "Myang Hwan Lee"

Understanding microscopic mechanisms of polarization retention characteristics in ferroelectric thin films is of great significance for exploring unusual physical phenomena inaccessible in the bulk counterparts and for realizing thin-film-based functional electronic devices. Perovskite (K,Na)NbO is an excellent class of lead-free ferroelectric oxides attracting tremendous interest thanks to its potential applications to nonvolatile memory and eco-friendly energy harvester/storage. Nonetheless, in-depth investigation of ferroelectric properties of (K,Na)NbO films and the following developments of nano-devices are limited due to challenging thin-film fabrication associated with nonstoichiometry by volatile K and Na atoms.

View Article and Find Full Text PDF

A bismuth ferrite and barium titanate solid solution compound can achieve good piezoelectric properties with a high Curie temperature when fabricated with low-temperature sintering followed by a water-quenching process, with no complicated grain alignment processes performed. By adding the super-tetragonal bismuth gallium oxide to the compound, the piezoelectric properties are as good as those of lead zirconate titanate ceramics.

View Article and Find Full Text PDF

Flexoelectric control of defect formation and associated electronic function is demonstrated in ferroelectric BiFeO3 thin films. An intriguing, so far never demonstrated, effect of internal electric field (Eint ) on defect formation is explored by a means of flexoelectricity. Our study provides novel insight into defect engineering, as well as allows a pathway to design defect configuration and associated electronic function.

View Article and Find Full Text PDF

Flexoelectricity can play an important role in the reversal of the self-polarization direction in epitaxial BiFeO3 thin films. The flexoelectric and interfacial effects compete with each other to determine the self-polarization state. In Region I, the self-polarization is downward because the interfacial effect is more dominant than the flexoelectric effect.

View Article and Find Full Text PDF