The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-resilin is investigated in detail. The dynamic and equilibrium swelling behavior of the crosslinked protein hydrogels with different crosslink density are reported under various controlled environments.
View Article and Find Full Text PDFIn this investigation, for the first time we report the effects of pH on the molecular orientation, packing density, structural properties, adsorption characteristics and viscoelastic behaviour of resilin-mimetic protein rec1-resilin at the solid-liquid interface using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) spectroscopy. QCM-D and SPR data confirm that the binding ability of rec1-resilin on a substrate is strongly pH-dependent the protein packing density on a gold surface is calculated to be 4.45 x 10(13) per cm(2) at the isoelectric point (IEP approximately 4.
View Article and Find Full Text PDFProtein adsorption on surfaces is a fundamental step in many applications. While various methods such as lithography, self assembly using nanoparticles, layer-by-layer attachment, etc. have been employed, here we report fabrication of controlled nanostructure of a new resilin-mimetic elastic protein rec1-resilin using physical approaches.
View Article and Find Full Text PDF