Photoexcited dihydronicotinamides like NADH and analogues have been found to generate alkyl radicals upon reductive decarboxylation of redox-active esters without auxiliary photocatalysts. This principle allowed aliphatic photocoupling between redox-active carboxylate derivatives and electron-poor olefins, displaying surprising water and air-tolerance and unusually high coupling rates in dilute conditions. The orthogonality of the reaction in the presence of other carboxylic acids and its utility in the functionalization of DNA is presented, notably using visible light in combination with NADH, the ubiquitous reductant of life.
View Article and Find Full Text PDFRubazonic acids are a class of dyes that are long-known, but studies on their syntheses and uses are rare. We now describe an experimentally simple and highly practical one-pot procedure for their synthesis starting from easily accessible 1-pyrazol-5(4)-ones. This protocol provides direct access to a broad range of the desired rubazonic acid derivatives through oxidative diazidation combined with a reductive work-up, without the need to isolate the potentially hazardous diazido compounds generated the target compounds.
View Article and Find Full Text PDFA new synthetic route toward the tetrazole core is described, which is based on a general fragmentation pattern that was found in a range of compounds featuring geminal diazido units. Through a simple two-step procedure, the synthesis of structurally diverse target compounds containing a tetrazole, such as tetrazoloquinoxalinones, benzoylaryltetrazoles, tetrazolotriazinones, and tetrazoloazepinones, was easily accomplished, starting from broadly accessible substrates (i.e.
View Article and Find Full Text PDFA concept for site selective acylation of poly-hydroxylated substrates is presented where polymer-supported catalysts are employed: catalytically active DMAP units were combined with a library of small molecule peptides attached to the solid phase with the goal to identify substrate-optimized catalysts through library screening. For selected examples, we demonstrate how the optimized catalysts can convert "their" substrate with a markedly enhanced site-selectivity, compared to only DMAP. Due to the solid support, product purification is significantly simplified, and the peptidic catalysts can be easily reused in multiple cycles while conserving its efficiency.
View Article and Find Full Text PDFGeminal diazides constitute a rare class of compounds where only a limited number of methods are available for their synthesis. We present the reaction of 1,3-dicarbonyl compounds (as exemplified by malonates, 3-oxoesters, and 1,3-diketones) with molecular iodine and sodium azide in aqueous DMSO providing a general access to geminal diazides. A broad range of geminal diazides with various structural motifs including sterically demanding substituents and ordinary functional groups were synthesized, and it was shown that the diazidation of 1,3-dicarbonyls can be selectively achieved even in the presence of other 1,3-dicarbonyls with substituents at 2-position.
View Article and Find Full Text PDF