Publications by authors named "My Ha"

Article Synopsis
  • T cells and their receptors (TCRs) are essential for understanding immune responses but are often overlooked in single-cell analysis, which typically focuses on gene expression.
  • The authors created a comprehensive T cell atlas from 12 major studies, involving 500,000 T cells across various diseases, and found challenges in accurately labeling cell types using standard methods.
  • They propose a TCR-first approach, using a semi-supervised method, to better identify T cell characteristics and dynamics, potentially enhancing immunotherapy and diagnostic strategies.
View Article and Find Full Text PDF
Article Synopsis
  • The MR1 molecule is a specialized antigen presenter that interacts with T cells, particularly mucosal-associated invariant T (MAIT) cells, by presenting various metabolites.
  • Researchers discovered distinct MR1-restricted T cell receptors (TCRs) in tumor-infiltrating lymphocytes from breast cancer patients, which responded specifically to certain breast cancer cell lines but not others.
  • The study indicates that these TCRs can recognize antigens in breast cancer without being affected by a known MR1 ligand antagonist, suggesting a unique interaction that relies on a specific residue of MR1 (K43).
View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH), a molecular cytogenetic technique that enables the visualization and identification of specific DNA sequences within chromosomes, has emerged as a pivotal tool in plant breeding programs, particularly in the case of species. , a genus with a complex reproductive system, often poses challenges in accurately identifying hybrids because of its tendency to hybridize, which leads to intricate genetic variation. This study focused on the use of FISH as a prescreening method to identify true hybrids in breeding programs.

View Article and Find Full Text PDF

The role of T cell receptor (TCR) diversity in infectious disease susceptibility is not well understood. We use a systems immunology approach on three cohorts of herpes zoster (HZ) patients and controls to investigate whether TCR diversity against varicella-zoster virus (VZV) influences the risk of HZ. We show that CD4 T cell TCR diversity against VZV glycoprotein E (gE) and immediate early 63 protein (IE63) after 1-week culture is more restricted in HZ patients.

View Article and Find Full Text PDF

T-cell-based diagnostic tools identify pathogen exposure but lack differentiation between recent and historical exposures in acute infectious diseases. Here, T-cell receptor (TCR) RNA sequencing was performed on HLA-DR+/CD38+CD8+ T-cell subsets of hospitalized coronavirus disease 2019 (COVID-19) patients (n = 30) and healthy controls (n = 30; 10 of whom had previously been exposed to severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]). CDR3α and CDR3β TCR regions were clustered separately before epitope specificity annotation using a database of SARS-CoV-2-associated CDR3α and CDR3β sequences corresponding to >1000 SARS-CoV-2 epitopes.

View Article and Find Full Text PDF

Saline intrusion is increasingly threatening the rice farming system in The Mekong River Delta (MRD). Identifying the impact of this disaster on rice farming and providing promptly adaptable solutions is an urgent issue. This study evaluates the influence of saline intrusion on rice productivity of households in the MRD.

View Article and Find Full Text PDF

Understanding how nanoparticles (NPs) interact with biological systems is important in many biomedical research areas. However, the heterogeneous nature of biological systems, including the existence of numerous cell types and multitudes of key environmental factors, makes these interactions extremely challenging to investigate precisely. Here, using a single-cell-based, high-dimensional mass cytometry approach, we demonstrated that the presence of protein corona has significant influences on the cellular associations and cytotoxicity of gold NPs for human immune cells, and those effects vary significantly with the types of immune cells and their subsets.

View Article and Find Full Text PDF

Owing to the spread of COVID-19, the need for an inspection center that can quickly determine whether travelers using the airport are infected has emerged. For rapid determination, not only polymerase chain reaction tests but also antigen-antibody tests and on-site analysis systems are required. However, because it is time- and cost-intensive to construct a building that meets the standards for negative pressure facilities, modular negative pressure facilities are being installed as alternatives.

View Article and Find Full Text PDF

Design of bifunctional multimetallic alloy catalysts, which are one of the most promising candidates for water splitting, is a significant issue for the efficient production of renewable energy. Owing to large dimensions of the components and composition of multimetallic alloys, as well as the trade-off behavior in terms of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials for bifunctional catalysts, it is difficult to search for high-performance bifunctional catalysts with multimetallic alloys using conventional trial-and-error experiments. Here, an optimal bifunctional catalyst for water splitting is obtained by combining Pareto active learning and experiments, where 110 experimental data points out of 77946 possible points lead to effective model development.

View Article and Find Full Text PDF

Highly efficient and all-solution processed quantum dot light-emitting diodes (QLEDs) with high performance are demonstrated by employing ZnMgO nanoparticles (NPs) with core/shell structure used as an electron transport layer (ETL). Mg-doping in ZnO NPs exhibits a different electronic structure and degree of electron mobility. A key processing step for synthesizing ZnMgO NPs with core/shell structure is adding Mg in the solution in addition to the remaining Mg and Zn ions after the core formation process.

View Article and Find Full Text PDF

The collagen-mimetic peptide GFOGER possesses the chondrogenic potential and has been used as a cell adhesion peptide or chondrogenic inducer. Here, we prepared an injectable in situ forming composite hydrogel system comprising methoxy polyethylene glycol-b-polycaprolactone (MPEG-PCL) and GFOGER-conjugated PEG-PCL (GFOGER-PEG-PCL) with various GFOGER concentrations based on our recently patented technology. The conjugation of GFOGER to PEG-PCL was confirmed by H NMR, and the particle size distribution and rheological properties for the sol-gel transition behavior of the samples with respect to the GFOGER content were evaluated systemically.

View Article and Find Full Text PDF

Background: Although the use of cardiac patches is still controversial, cardiac patch has the significance in the field of the tissue engineered cardiac regeneration because it overcomes several shortcomings of intra-myocardial injection by providing a template for cells to form a cohesive sheet. So far, fibrous scaffolds fabricated using electrospinning technique have been increasingly explored for preparation of cardiac patches. One of the problems with the use of electrospinning is that nanofibrous structures hardly allow the infiltration of cells for development of 3D tissue construct.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving the early diagnosis of pediatric rheumatic diseases by analyzing gene expression in blood samples and applying machine learning to develop predictive models.
  • RNA sequencing was performed on blood from children with rheumatic diseases, viral infections, and controls, leading to the development of classification models that successfully distinguished between various disease groups.
  • Results indicated that certain classifiers achieved high accuracy in differentiating rheumatic conditions, highlighting the role of innate immune responses, and suggesting blood transcriptomics combined with machine learning could aid in clinical diagnostics.
View Article and Find Full Text PDF

The epoxy-based crosslinked polymer with the mesogenic group has been studied as a candidate resin material with high thermal conductivity due to the ordered structure of the mesogenic groups. In this study, we conducted all atomic molecular dynamics simulations with iterative crosslinking procedures on various epoxy resins with mesogenic motifs to investigate the effect of molecular alignment on thermal conductivity. The stacked structure of aromatic groups in the crosslinked polymer was analyzed based on the angle-dependent radial distribution function (ARDF), where the resins were categorized into three groups depending on their monomer shapes.

View Article and Find Full Text PDF

Conformational changes in macromolecules significantly affect their functions and assembly into high-level structures. Despite advances in theoretical and experimental studies, investigations into the intrinsic conformational variations and dynamic motions of single macromolecules remain challenging. Here, liquid-phase transmission electron microscopy enables the real-time tracking of single-chain polymers.

View Article and Find Full Text PDF

Neural and cognitive deficits after mild traumatic brain injury (mTBI) are paralleled by changes in resting state functional correlation (FC) networks that mirror post-traumatic pathophysiology effects on functional outcomes. Using functional magnetic resonance images acquired both acutely and chronically after injury (∼1 week and ∼6 months post-injury, respectively), we map post-traumatic FC changes across 136 participants aged 19-79 (52 females), both within and between the brain's seven canonical FC networks: default mode, dorsal attention, frontoparietal, limbic, somatomotor, ventral attention, and visual. Significant sex-dependent FC changes are identified between (A) visual and limbic, and between (B) default mode and somatomotor networks.

View Article and Find Full Text PDF

Background: Prolonged shedding of SARS-CoV-2 in immunocompromised patients has been described. Furthermore, an accumulation of mutations of the SARS-CoV-2 genome in these patients has been observed.

Methods: We describe the viral evolution, immunologic response and clinical course of a patient with a lymphoma in complete remission who had received therapy with rituximab and remained SARS-CoV-2 RT-qPCR positive for 161 days.

View Article and Find Full Text PDF

Although chitosan is the second most abundant natural polymer on earth, with a wide range of biomaterial applications, its poor water solubility limits general printing process. We selected water-soluble methacrylated glycol chitosan (MeGC) as an alternative and prepared a MeGC-based MG-63 cell-laden bioink for 3D printing using a visible light curing system. Optimal cell-laden 3D printing of MeGC was completed at 3% using 12 μM of riboflavin as a photoinitiator under an irradiation for 70 s, a 26-gauge nozzle, a pneumatic pressure of 120 kPa, and a printing speed of 6 mm/s, as confirmed by printability, protein adsorption, cell viability, cell proliferation, and osteogenic capability.

View Article and Find Full Text PDF

Increasing production and application of silver nanoparticles (Ag NPs) have raised concerns on their possible adverse effects on human health. However, a comprehensive understanding of their effects on biological systems, especially immunomodulatory responses involving various immune cell types and biomolecules (e.g.

View Article and Find Full Text PDF

Searching for an optimal component and composition of multi-metallic alloy catalysts, comprising two or more elements, is one of the key issues in catalysis research. Due to the exhaustive data requirement of conventional machine-learning (ML) models and the high cost of experimental trials, current approaches rely mainly on the combination of density functional theory and ML techniques. In this study, a significant step is taken toward overcoming limitations by the interplay of experiment and active learning to effectively search for an optimal component and composition of multi-metallic alloy catalysts.

View Article and Find Full Text PDF

Quantification of cellular nanoparticles (NPs) is one of the most important steps in studying NP-cell interactions. Here, a simple method for the estimation of cell-associated silver (Ag) NPs in lung cancer cells (A549) is proposed based on their side scattering (SSC) intensities measured by flow cytometry (FCM). To estimate cellular Ag NPs associated with A549 cells over a broad range of experimental conditions, we measured the normalized SSC intensities (nSSC) of A549 cells treated with Ag NPs with five different core sizes (i.

View Article and Find Full Text PDF

Small-molecule acceptor (SMA)-based organic solar cells (OSCs) have achieved high power conversion efficiencies (PCEs), while their long-term stabilities remain to be improved to meet the requirements for real applications. Herein, we demonstrate the use of donor-acceptor alternating copolymer-type compatibilizers (DACCs) in high-performance SMA-based OSCs, enhancing their PCE, thermal stability, and mechanical robustness simultaneously. Detailed experimental and computational studies reveal that the addition of DACCs to polymer donor ()-SMA blends effectively reduces -SMA interfacial tensions and stabilizes the interfaces, preventing the coalescence of the phase-separated domains.

View Article and Find Full Text PDF

Using all-atom molecular dynamics simulation, we investigated the wettability of a surface texturized with nanoscale pillars of domed, rectangular, or cylindrical shapes. The dewetted and wetted states of the gaps between the pillars were related to the Cassie-Baxter (CB) and Wenzel (WZ) states of a macroscopic water droplet resting on top of the pillars. We uncovered the structures and free energies of the intermediate states existing between the CB and WZ states.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how the spacing between pillars in dual-scale structures affects the transition of wetting states (Wenzel to Cassie-Baxter) through theoretical formulas and molecular dynamics simulations.
  • The research found that higher primary pillar heights and more secondary pillars lead to an increase in the transitional interpillar spacing.
  • Results indicated that the hydrophobic nature of the surface is enhanced by dual-scale structures, affecting the wetting behavior significantly.
View Article and Find Full Text PDF

Zinc oxide nanoparticles (ZnO NPs) have been widely used as an inorganic electron transport layer (ETL) in quantum dot light-emitting devices (QLEDs) due to their excellent electrical properties. Here, we report the effect of ZnO NPs inorganic ETL of different particle sizes on the electrical and optical properties of QLEDs. We synthesized ZnO NPs into the size of 3 nm and 8 nm respectively and used them as an inorganic ETL of QLEDs.

View Article and Find Full Text PDF