Publications by authors named "Mxolisi M Motsa"

Composite polyethersulfone (PES) membranes containing N-aminoethyl piperazine propane sulfonate (AEPPS)-modified graphene oxide (GO) were integrated with either of the two pretreatment processes (activated carbon (AC) adsorption or polyelectrolyte coagulation) to assess their effectiveness in mitigating membrane fouling during the treatment of abattoir wastewater. The AEPPS@GO-modified membranes, as compared to the pristine PES membranes, showed improved hydrophilicity, with water uptake increasing from 72 to 118%, surface porosity increasing from 2.34 to 27%, and pure water flux (PWF) increasing from 235 to 673 L.

View Article and Find Full Text PDF

In this study, polyethersulfone (PES) ultrafiltration (UF) membranes were modified with GO, Ag, ZnO, Ag-GO and ZnO-GO nanoparticles to improve carbamazepine removal and fouling prevention by making membrane surfaces more hydrophilic. The fabricated membranes were characterized for surface and cross-sectional morphology, surface roughness and zeta potential, as well as hydrophilicity, functional groups, surface tension parameters and water permeability Thereafter, the membranes were evaluated for their efficiency in removing MgSO and carbamazepine as well as antifouling properties. To understand the role of affinity interactions in rejection and fouling, membrane-solute adhesion energies (∆Gslm) were quantified based on the Lifshitz-van der Waals/acid-base method.

View Article and Find Full Text PDF

In this work, inkjet printing technology was used to print a thin layer of a hydrophilic solution containing polydopamine as a binder and polyethyleneimine as a strong hydrophilic agent on a commercial hydrophobic membrane to produce a Janus membrane for membrane distillation. The pristine and modified membranes were tested in a direct-contact membrane distillation system with mineral oil-containing feedwater. The results revealed that an integrated and homogenous hydrophilic layer was printed on the membrane with small intrusions in the pores.

View Article and Find Full Text PDF

The adoption of green technology is very important to protect the environment and thus there is a need for improving the existing methods for the fabrication of carbon materials. As such, this work proposes to discuss, interrogate, and propose viable hydrothermal, solvothermal, and other advanced carbon materials synthesis methods. The synthesis approaches for advanced carbon materials to be interrogated will include the synthesis of carbon dots, carbon nanotubes, nitrogen/titania-doped carbons, graphene quantum dots, and their nanocomposites with solid/polymeric/metal oxide supports.

View Article and Find Full Text PDF

Herein we present a two-stage phase inversion method for the preparation of nanocomposite membranes for application in ultra-low-pressure reverse osmosis (ULPRO). The membranes containing DA-stabilized xGnP (xGnP-DA-) were then prepared via dry phase inversion at room temperature, varying the drying time, followed by quenching in water. The membranes were characterized for chemical changes utilizing attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF