Combining the first generation H(1) antihistamine chlorpheniramine (1) with H(3) ligands of the alkylamine type has led to the identification of compound 9d, a dual ligand of both the H(1) and H(3) receptors.
View Article and Find Full Text PDFSilanols are best known as unstable precursors of siloxane (silicone) polymers, substances generally considered stable and inert, but have the potential to mimic a hydrated carbonyl and inhibit protease enzymes. While previous testing of simple silanediol and silanetriol species as inhibitors of hydrolase enzymes found them ineffective, this study reports polypeptide mimics with a central methylsilanol [SiMeOH] or silanediol [Si(OH)(2)] group and their assessment as effective transition state analogue inhibitors of the well-studied metalloprotease angiotensin-converting enzyme (ACE). Central to the synthesis strategy, phenylsilanes were employed as acid-hydrolyzable precursors of the silanol group.
View Article and Find Full Text PDFA thorough SAR study of the oxime region of the dual NK(1)/NK(2) antagonist 1 revealed several modifications that result in potent dual antagonists. Follow up SAR studies on a second-generation scaffold demonstrate that certain polar groups on the oxime can improve the dual binding affinity to the subnanomolar range.
View Article and Find Full Text PDF