An extreme bandgap AlGaN quantum channel HEMT with AlGaN top and back barriers, grown by MOCVD on a bulk AlN substrate, demonstrated a critical breakdown field of 11.37 MV/cm-higher than the 9.8 MV/cm expected for the channel's AlGaN material.
View Article and Find Full Text PDFStudy Objectives: Evaluate wrist-placed accelerometry predicted heartrate compared to electrocardiogram (ECG) heartrate in children during sleep.
Methods: Children (n=82, 61% male, 43.9% Black) wore a wrist-placed Apple Watch Series 7 (AWS7) and ActiGraph GT9X during a polysomnogram.
The purpose of this study was to evaluate the reliability and validity of the raw accelerometry output from research-grade and consumer wearable devices compared to accelerations produced by a mechanical shaker table. Raw accelerometry data from a total of 40 devices (i.e.
View Article and Find Full Text PDFIntroduction: Current wearables that collect heart rate and acceleration were not designed for children and/or do not allow access to raw signals, making them fundamentally unverifiable. This study describes the creation and calibration of an open-source multichannel platform (PATCH) designed to measure heart rate and acceleration in children ages 3-8 yr.
Methods: Children (N = 63; mean age, 6.
Unlabelled: Photoplethysmography (PPG) signal quality as a proxy for accuracy in heart rate (HR) measurement is useful in various public health contexts, ranging from short-term clinical diagnostics to free-living health behavior surveillance studies that inform public health policy. Each context has a different tolerance for acceptable signal quality, and it is reductive to expect a single threshold to meet the needs across all contexts. In this study, we propose two different metrics as sliding scales of PPG signal quality and assess their association with accuracy of HR measures compared to a ground truth electrocardiogram (ECG) measurement.
View Article and Find Full Text PDFMetal node engineering in combination with modularity, topological diversity, and porosity of metal-organic frameworks (MOFs) could advance energy and optoelectronic sectors. In this study, we focus on MOFs with multinuclear heterometallic nodes for establishing metal-property trends, , connecting atomic scale changes with macroscopic material properties by utilization of inductively coupled plasma mass spectrometry, conductivity measurements, X-ray photoelectron and diffuse reflectance spectroscopies, and density functional theory calculations. The results of Bader charge analysis and studies employing the Voronoi-Dirichlet partition of crystal structures are also presented.
View Article and Find Full Text PDFThe development of porous well-defined hybrid materials (e.g., metal-organic frameworks or MOFs) will add a new dimension to a wide number of applications ranging from supercapacitors and electrodes to "smart" membranes and thermoelectrics.
View Article and Find Full Text PDFWe report on a method to produce free-standing graphene sheets from epitaxial graphene on silicon carbide (SiC) substrate. Doubly clamped nanomechanical resonators with lengths up to 20 microm were patterned using this technique and their resonant motion was actuated and detected optically. Resonance frequencies of the order of tens of megahertz were measured for most devices, indicating that the resonators are much stiffer than expected for beams under no tension.
View Article and Find Full Text PDFThe ultrafast relaxation and recombination dynamics of photogenerated electrons and holes in epitaxial graphene are studied using optical-pump terahertz-probe spectroscopy. The conductivity in graphene at terahertz frequencies depends on the carrier concentration as well as the carrier distribution in energy. Time-resolved studies of the conductivity can therefore be used to probe the dynamics associated with carrier intraband relaxation and interband recombination.
View Article and Find Full Text PDF