Self-assembled monolayers (SAMs) of 1,1'-biphenyl-4-thiol (H-(C(6)H(4))(2)-SH) on Au(111) were prepared from solution or via vapor deposition in ultrahigh vacuum and characterized by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and X-ray photoelectron spectroscopy (XPS). In contrast to the typically observed for densely packed alkane-thiol SAMs on Au(111) (√3 × √3)R30° structure, the densely packed aromatic biphenylthiol SAMs prepared by both methods exhibit an unusual hexagonal (2 × 2) structure. Upon annealing at 100 °C, this structure evolves into the (2 × 7√3) structure resulting in the formation of highly ordered pinstripes oriented along the [1 -1 0] directions.
View Article and Find Full Text PDFImplementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle.
View Article and Find Full Text PDFPoly-ADP ribose polymerase (PARP) inhibitors have shown promise in the treatment of human malignancies characterized by deficiencies in the DNA damage repair proteins BRCA1 and BRCA2 and preclinical studies have demonstrated the potential effectiveness of PARP inhibitors in targeting ataxia-telangiectasia mutated (ATM)-deficient tumours. Here, we show that mantle cell lymphoma (MCL) cells deficient in both ATM and p53 are more sensitive to the PARP inhibitor olaparib than cells lacking ATM function alone. In ATM-deficient MCL cells, olaparib induced DNA-PK-dependent phosphorylation and stabilization of p53 as well as expression of p53-responsive cell cycle checkpoint regulators, and inhibition of DNA-PK reduced the toxicity of olaparib in ATM-deficient MCL cells.
View Article and Find Full Text PDFBackground: It has been proposed that the chemokine receptor, CXCR4, and its ligand, stromal cell-derived factor-1 (SDF-1), play a critical role in organ-specific tumor metastasis. High CXCR4 expression in resected non-small cell lung cancer (NSCLC) tumors is associated with poorer outcome; however, its effect on patient outcome in advanced NSCLC has not been explored.
Methods: After institutional ethical approval was obtained, demographic details, clinical variables, and outcome data were collected on consecutive NSCLC patients diagnosed at the Tom Baker Cancer Centre from 2003 to 2006 (Glans-Look Lung Cancer Database).
Poly(ADP-ribose) polymerase-1 (PARP-1) inhibition is toxic to cells with mutations in the breast and ovarian cancer susceptibility genes BRCA1 or BRCA2, a concept termed synthetic lethality. However, whether this approach is applicable to other human cancers with defects in other DNA repair genes has yet to be determined. The ataxia telangiectasia mutated (ATM) gene is altered in several human cancers including mantle cell lymphoma (MCL).
View Article and Find Full Text PDFMantle cell lymphoma (MCL) an incurable B-cell, non-Hodgkin lymphoma (NHL) urgently requires new treatments. We assessed reovirus mediated oncolysis in a panel of human MCL cell lines. In vitro, we found the cytopathic effect of reovirus infection ranged from high to very limited and correlated with levels of Ras activation.
View Article and Find Full Text PDFMyxoma virus, a poxvirus previously considered rabbit specific, can replicate productively in a variety of human tumor cells in culture. The purpose of this study was to determine if there was efficacy or toxicities of this oncolytic virus against experimental models of human malignant gliomas in vitro, in vivo, and ex vivo in malignant glioma specimens. In vitro, the majority of glioma cell lines tested (7 of 8, 87.
View Article and Find Full Text PDFPurpose: Human reovirus type 3 has been proposed to kill cancer cells with an activated Ras signaling pathway. The purpose of this study was to investigate the efficacy of reovirus in immunocompetent glioma animal models and safety/toxicity in immunocompetent animals, including nonhuman primates.
Experimental Design: Racine glioma cells 9L and RG2 were implanted s.
Brain and leptomeningeal metastases are common in breast cancer patients and our current treatments are ineffective. Reovirus type 3 is a replication competent, naturally occurring virus that usurps the activated Ras-signaling pathway (or an element thereof) of tumor cells and lyses them but leaves normal cells relatively unaffected. In this study we evaluated reovirus as an experimental therapeutic in models of central nervous system (CNS) metastasis from breast cancer.
View Article and Find Full Text PDFPurpose: Clinical and experimental evidence suggest that the p33ING1b candidate tumor suppressor functionally cooperates with p53 in controlling biochemical and biological functions. Because p53 is frequently mutated in brain tumors and the ING1 locus maps to a site of which the loss is associated with gliomas, we analyzed the mutation and expression profiles of ING1B in human brain tumors. Here we present the first report of ING1 expression and mutation analyses in human brain tumor samples and malignant glioma cell lines.
View Article and Find Full Text PDFMedulloblastoma (MB), the most common pediatric brain tumor, is a highly malignant disease with a 5-year survival rate of only 60%. Tumor cells invade surrounding tissue and disseminate through cerebral spinal fluid, making treatment difficult. Human reovirus type 3 exploits an activated Ras pathway in tumor cells to support productive infection as an oncolytic virus.
View Article and Find Full Text PDFStudies have suggested that an imbalance of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) may contribute to the malignant phenotype of gliomas. In this study, we have undertaken a detailed analysis of expression of the TIMP family in normal human brain and malignant gliomas at both the mRNA and protein level. Reverse transcription-PCR (RT-PCR) analyses of total RNA from surgical tumour specimens revealed unique expression patterns for the 4 members of the TIMP family, with TIMP-1 and -4 showing positive and negative correlations, respectively, with glioma malignancy.
View Article and Find Full Text PDFMalignant gliomas maintain a poor prognosis and survival rate due to their marked local invasive growth and neovascularization. Matrix metalloproteinases (MMPs) have been implicated in glioma invasion and angiogenesis, but it is unknown whether they are produced by the tumor cells or surrounding stroma. Using in situ hybridization and immunohistochemistry, we found expression of mRNA for both gelatinase-A (MMP2) and gelatinase-B (MMP9) localized to tumor cells and vascular structures in glioma sections.
View Article and Find Full Text PDFDown regulation of the ING1 candidate tumour suppressor promotes growth in soft agar and focus formation in vitro and tumour formation in vivo. ING1 encodes a nuclear, cell cycle-regulated protein, overexpression of which efficiently blocks cell growth and is capable of inducing apoptosis in different experimental systems. Here we present the first report of ING1 mutation and expression analysis in a total of 452 cancer samples.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) have been implicated as important factors in gliomas since they may both facilitate invasion into the surrounding brain and participate in neovascularization. We have tested the hypothesis that deregulated expression of gelatinase-A or B, or an activator of gelatinase-A, MT1-MMP, may contribute directly to human gliomas by quantifying the expression of these MMPs in 46 brain tumour specimens and seven control tissues. Quantitative RT-PCR and gelatin zymography showed that gelatinase-A in glioma specimens was higher than in normal tissue; these were significantly elevated in low grade gliomas and remained elevated in GBMs.
View Article and Find Full Text PDFThe altered gene expression seen in cancer could relate to differences in nonhistone chromatin proteins between normal and malignant tumor cells. Phenol-soluble nonhistone chromatin proteins were isolated from human normal and leukemic (chronic lymphocytic leukemia) B-cells, as well as long-term cultured human B-lymphocyte cell lines. High-resolution two-dimensional electrophoretic maps identified a group of three nuclear proteins with a molecular weight of 45,000 to 50,000 and an isoelectric range of 4.
View Article and Find Full Text PDFAttempts were made to adapt human long-term B lymphoblastoid cell lines to prolonged growth in serum-free, chemically defined media. A newly described medium, which is an enriched modification of Dulbecco's modified Eagle's medium containing additional amino acids and vitamins, was used. The serum is totally replaced by albumin, transferrin, and soybean lipid.
View Article and Find Full Text PDFHLA-DR (or Ia-like) antigens which were detergent-solubilized from plasma membranes of leukemic cells of patients with chronic lymphocytic leukemia of the B cell variety were purified by gel filtration, followed by affinity chromatography on Con A-Sepharose. After radioiodination, the DR antigens were immunoprecipitated with specific antisera and analyzed by two-dimensional gel electrophoresis. Repeated mapping revealed several different patterns of DR antigen expression.
View Article and Find Full Text PDFNitrobenzylthioinosine (NBMPR), an inhibitor of nucleoside transport, was tested in combination with 1-beta-D-arabinofuranosylcytosine (ara-C) for therapeutic activity against mouse leukemia L1210. NBMPR alone had no activity, whereas therapy with NBMPR and ara-C in combination was significantly better than with ara-C alone. The therapeutic potentiation resulting from the combination of NBMPR and ara-C appeared to be host mediated since NBMPR alone was not toxic to cultured L1210 cells.
View Article and Find Full Text PDF