Publications by authors named "Muzhen Xu"

In the past few decades, microalgae-based bioremediation methods for treating heavy metal (HM)-polluted wastewater have attracted much attention by virtue of their environment friendliness, cost efficiency, and sustainability. However, their HM removal efficiency is far from practical use. Directed evolution is expected to be effective for developing microalgae with a much higher HM removal efficiency, but there is no non-invasive or label-free indicator to identify them.

View Article and Find Full Text PDF

The advent of intelligent image-activated cell sorting (iIACS) has enabled high-throughput intelligent image-based sorting of single live cells from heterogeneous populations. iIACS is an on-chip microfluidic technology that builds on a seamless integration of a high-throughput fluorescence microscope, cell focuser, cell sorter, and deep neural network on a hybrid software-hardware data management architecture, thereby providing the combined merits of optical microscopy, fluorescence-activated cell sorting (FACS), and deep learning. Here we report an iIACS machine that far surpasses the state-of-the-art iIACS machine in system performance in order to expand the range of applications and discoveries enabled by the technology.

View Article and Find Full Text PDF

The objective of this study was to reveal hub pathway cross-talk for premature newborns with bronchopulmonary dysplasia (BPD) based on the pathway enrichment analysis and Monte Carlo Cross-Validation (MCCV) method. The inference of key pathway cross-talk consisted of four parts: i) Identifying differentially expressed genes (DEGs); ii) detecting differentially expressed pathways (DEPs); iii) computing discriminating score (DS) for each pair of DEPs or cross-talk and investigating seed cross-talk through the random forest (RF) algorithm and iv) extracting hub cross-talk dependent on the MCCV method. The results showed that a total of 132 DEGs and 137 DEPs were obtained across BPD patients and normal controls.

View Article and Find Full Text PDF

Nanoskiving, benefiting from its simple operation and high reproducibility, is a promising method to fabricate nanometer-size electrodes. In this work, we report the fabrication of Au nanowire electrodes with different shapes and well-controlled sizes through nanoskiving. Au nanowire block electrodes, membrane electrodes and tip electrodes are prepared with good reproducibility.

View Article and Find Full Text PDF

The evaluation of single carbon particle catalysts is critical to better understand the relationship between structure and properties. Here, we use an electrochemical collision method to study the electrocatalytic behaviour of single hollow porous carbon catalyst on gold nanoband electrodes (AuNBE). We observed the catalytic current of oxygen reduction of single carbon particle and quantified the contribution of the porous structure to the catalytic performance.

View Article and Find Full Text PDF
Article Synopsis
  • A new probe using gold nanoparticles (GNPs) has been developed to measure proteins in rat cerebrospinal fluid.
  • The GNPs are linked with two aptamers through proximity ligation, offering enhanced absorbance and strong resistance to salt.
  • This method shows excellent selectivity and responsiveness to proteins like interferon-gamma present in the brain.
View Article and Find Full Text PDF

Wearable pressure sensors have attracted increasing attention for biomechanical monitoring due to their portability and flexibility. Although great advances have been made, there are no facile methods to produce sensors with good performance. Here, we present a simple method for manufacturing flexible and self-powered piezoelectric sensors based on LiNbO (LN) particles.

View Article and Find Full Text PDF

Nanoscaled electrode has been attracting increasing attention because of striking fundamentals and practical applications. Usually, the nanoscaled electrode is fabricated by manual or photo or electron-beam lithography, which is not easy to reproducibly fabricate with simple equipment. In this paper, a cost-effective method, nanoskiving, is developed to fabricate an ultralong nanowire electrode (ULNE).

View Article and Find Full Text PDF