Colloids Surf B Biointerfaces
February 2024
Bacterial and fungal pathogens forming oral biofilms present significant public health challenges due to the failure of antimicrobial drugs. The ability of biofilms to lower pH levels results in dental plaque, leading to gingivitis and cavities. Nanoparticles (NPs) have attracted considerable interest for drug delivery and, thus, as a solution to biofilm-related microbial infections.
View Article and Find Full Text PDFIn recent years, hydrogels as drug carriers have been receiving great interest due to their ability to change their behavior in response to one or more external stimuli. However, their initial burst release profile limits their practical applications. Therefore, we prepared a bio-based hydrogel nanocomposite (HNC) using starch, itaconic acid, acrylic acid and gelatin in the presence of CNF/ZnO-based nanohybrid (ZONH) and used it to evaluate the pH-sensitive drug release properties in different pH solutions.
View Article and Find Full Text PDFGreen-synthesized nanoparticles provide an effective strategy for inhibiting microbial pathogenesis by affecting biofilm formation, quorum sensing (QS), and other surface properties of microorganisms. QS is a density-dependent communication signaling cascade that regulates biofilm formation and other pathogenic factors of Pseudomonas aeruginosa. In this context, the effect of phytofabricated silver nanoparticles (CC-AgNPs) synthesized using Cuphea carthagenensis extract on biofilm, QS, and QS-dependent virulence factors of P.
View Article and Find Full Text PDFA facile one-pot approach was adopted to prepare a polysaccharide-based hydrogel of oxidized starch (OS)-chitosan. The synthetic monomer-free, eco-friendly hydrogel was prepared in an aqueous solution and employed for controlled drug release application. The starch was first oxidized under mild conditions to prepare its bialdehydic derivative.
View Article and Find Full Text PDFTo explore changes in proteins and metabolites under stress circumstances, genomics, proteomics, and metabolomics methods are used. In-depth research over the previous ten years has gradually revealed the fundamental processes of plants' responses to environmental stress. Abiotic stresses, which include temperature extremes, water scarcity, and metal toxicity brought on by human activity and urbanization, are a major cause for concern, since they can result in unsustainable warming trends and drastically lower crop yields.
View Article and Find Full Text PDFEthnomedicinal plants are a rich reservoir of active compounds with potent pharmacological properties. Therefore, plants could serve as a source for the discovery of active antimicrobial and antioxidant agents and are focused because of their low toxicity, economic viability, easy availability, etc. In this regard, phytochemical analyses, viz.
View Article and Find Full Text PDFThis study investigated an integrated approach to the biowaste transformation and valorization of byproducts. Biochar obtained from the banana pseudostem was calcined to synthesize a heterogeneous catalyst and sustainably prepare a highly alkaline solution. The ash was utilized directly as a heterogeneous catalyst in biodiesel production from waste cooking oil.
View Article and Find Full Text PDFGelatin, being a naturally derived biomacromolecule shows good biocompatibility and biodegradability and hence turn out to be a potential biomaterial in synthesizing adhesive hydrogel. However, to achieve significant adhesive strength under wet condition and good mechanical properties, gelatin is functionalised with dopamine and acrylic acid. Here, inspired from nature, we have developed a gelatin based adhesive hydrogel for wet surfaces by incorporating dopamine into gelatin-poly(acrylic acid) chain.
View Article and Find Full Text PDFPseudomonas aeruginosa, a ubiquitous opportunistic and nosocomial biofilm-forming pathogen with complex, interconnected and hierarchical nature of QS systems (Las, Rhl, PQS, and IQS), is posing the biggest challenge to the healthcare sector and have made current chemotherapies incapable. Conventional antibiotics designed to intercept the biochemical or physiological processes precisely of planktonic microorganisms exert extreme selective pressure and develop resistance against them thereby emphasizing the development of alternative therapeutic approaches. Additionally, quorum sensing induced pathogenic microbial biofilms and production of virulence factors have intensified the pathogenicity, drug resistance, recurrence of infections, hospital visits, morbidity, and mortality many-folds.
View Article and Find Full Text PDFThe paper and pulp industry (PPI) is one of the largest industries that contribute to the growing economy of the world. While wood remains the primary raw material of the PPIs, the demand for paper has also grown alongside the expanding global population, leading to deforestation and ecological imbalance. Wood-based paper production is associated with enormous utilization of water resources and the release of different wastes and untreated sludge that degrades the quality of the environment and makes it unsafe for living creatures.
View Article and Find Full Text PDFMicroscopes, bright-field (BF) and fluorescence microscopes, in particular, are ubiquitous for clinical diagnostics, cellular and microbiological investigations and in research laboratories. However, the size, cost, fragility and need for skilled personnel to operate these tools restrict their use in resource-limited settings. As an alternative platform, herein, we report a flexible multimodal imaging system that operates in BF and fluorescence modes using a smartphone.
View Article and Find Full Text PDFThe green synthesis of nanoparticles (NPs) is the safest, ecofriendly, cost-effective, and non-hazardous approach of nanotechnology. In the current study, we described the green synthesis of silver nanoparticles (AgNPs) using Cuphea carthagenensis aqueous leaf extract as a reducing, capping, and stabilizing agent. The study aims at the synthesis, characterization, optimization, and determination of the antibacterial activity of Cc-AgNPs against clinically important human pathogens.
View Article and Find Full Text PDFThe assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quorum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, signaling cascades, and secondary messengers.
View Article and Find Full Text PDFEthnopharmcological Relevance: Microbial biofilm formation, a quorum sensing (QS) regulated process, is one of the major causes of nosocomial and chronic infections, foodborne diseases, and associated deaths. Various approaches have been used to eradicate the menace of biofilm. Ethnomedicinal plants as potent antibiofilm agents are gaining a lot of interest in an era where the drug resistance is increasing and the availability of potent antibiotics is no longer promised.
View Article and Find Full Text PDFLam. () and Roxb. () are two endemic plants that grow on the Asian continent.
View Article and Find Full Text PDF